In this study, the synthesis and characterization of novel fluorescent ZnO nanopowder are reported. The reaction medium used for the oxide precipitation procedure was choline nitrate, a compound that is a liquid molten salt at room temperature. The purity of the obtained ZnO was assessed through infrared spectroscopy studies and X-ray diffraction analyses; its morphology was observed under SEM, indicating the presence of nanometric spherical aggregates of hexagonal nanocrystals (d ≈ 23 nm), and the photoluminescence spectrum yielded a broad band in the yellow region (578 nm). All these properties were compared with those of ZnO nanoparticles synthesised in a nitrate-urea deep eutectic solvent, wherein the nanoparticles adopted bidimensional morphology; the XRD spectrum demonstrated a preferential orientation, and the fluorescence peak moved in the orange wavelength range. Thus, we show that the use of urea changes the system from an ionic liquid to a DES and promotes a switch in the template effect from 0D to 2D.

Templating effect travelling on the edge between an ionic liquid and a DES: the case of fluorescent ZnO nanostructures in choline nitrate

Bauer E. M.
Penultimo
Data Curation
;
Carbone M.
Ultimo
Project Administration
2025

Abstract

In this study, the synthesis and characterization of novel fluorescent ZnO nanopowder are reported. The reaction medium used for the oxide precipitation procedure was choline nitrate, a compound that is a liquid molten salt at room temperature. The purity of the obtained ZnO was assessed through infrared spectroscopy studies and X-ray diffraction analyses; its morphology was observed under SEM, indicating the presence of nanometric spherical aggregates of hexagonal nanocrystals (d ≈ 23 nm), and the photoluminescence spectrum yielded a broad band in the yellow region (578 nm). All these properties were compared with those of ZnO nanoparticles synthesised in a nitrate-urea deep eutectic solvent, wherein the nanoparticles adopted bidimensional morphology; the XRD spectrum demonstrated a preferential orientation, and the fluorescence peak moved in the orange wavelength range. Thus, we show that the use of urea changes the system from an ionic liquid to a DES and promotes a switch in the template effect from 0D to 2D.
2025
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
Deep Eutectic Solvents
Nanoparticles
Pretreatment
Ecotoxicity
Diffraction
Extraction
Nanoscale
Peak
File in questo prodotto:
File Dimensione Formato  
d5ma00030k-1 IRIS.pdf

non disponibili

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/546141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact