Semitransparent perovskite solar cells (ST-PSCs) for tandem applications typically use a buffer layer deposited via atomic layer deposition (ALD) to protect the cell stack from the damage induced by the sputtering of the transparent electrode. Here, we present a simple yet effective solution-processed buffer layer based on metal-oxide nanoparticles to mitigate sputter-induced damage. We exploit this strategy in a monolithic tandem integrating the optimized ST-PSC on a polished front-side/unpolished rear-side p-type silicon heterojunction (SHJ) solar cell. The intrinsic roughness on the backside significantly boosts the absorption, thus suppressing the need for a dedicated texturization step and leading to a final maximum efficiency of 25.3%. Our findings highlight the potential of solution-processed buffer layers as a practical and scalable solution to mitigate the sputtering damage, as well as the potential of silicon wafers with an unpolished rear surface for enhanced photocurrent.

Solution-Processed Metal-Oxide Nanoparticles to Prevent The Sputtering Damage in Perovskite/Silicon Tandem Solar Cells

Magliano E.
Primo
;
Becerril Rodriguez D.;Ammirati G.;Mariani P.;Luce M.;Cricenti A.;Di Carlo A.
Ultimo
2025

Abstract

Semitransparent perovskite solar cells (ST-PSCs) for tandem applications typically use a buffer layer deposited via atomic layer deposition (ALD) to protect the cell stack from the damage induced by the sputtering of the transparent electrode. Here, we present a simple yet effective solution-processed buffer layer based on metal-oxide nanoparticles to mitigate sputter-induced damage. We exploit this strategy in a monolithic tandem integrating the optimized ST-PSC on a polished front-side/unpolished rear-side p-type silicon heterojunction (SHJ) solar cell. The intrinsic roughness on the backside significantly boosts the absorption, thus suppressing the need for a dedicated texturization step and leading to a final maximum efficiency of 25.3%. Our findings highlight the potential of solution-processed buffer layers as a practical and scalable solution to mitigate the sputtering damage, as well as the potential of silicon wafers with an unpolished rear surface for enhanced photocurrent.
2025
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
AZO nanoparticles
light management
perovskite/silicon tandem solar cells
protective buffer layers
semitransparent
sputtering damage
File in questo prodotto:
File Dimensione Formato  
magliano-et-al-2025-solution-processed-metal-oxide-nanoparticles-to-prevent-the-sputtering-damage-in-perovskite-silicon.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/547181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact