Copper alloy artworks are particularly subjected to chloride attack, which may trigger bronze disease. Therefore, early identification of the phenomenon is crucial in order to stabilize the reactive copper chloride (CuCl) and remove the harmful corrosion products (atacamite and polymorphs). Confocal Raman Microspectroscopy (CRM) has proven to be effective for the detection of small amounts of atacamite, ascribable to the initial phases of corrosion. The handling of bronze artworks is often difficult or even impossible given their large size and weight, and sampling is not always allowed, making the use of portable instruments mandatory for on-site diagnostics. This paper proposes a method for the early detection of corrosion using non-invasive approaches. In this work, we present the results obtained from a set of artificially aged bronze samples with a suite of either laboratory (bench-top) or field (portable/transportable) instruments with the aim of highlighting their characteristics and performances in the diagnosis of bronze disease. Raman spectroscopy, Fiber Optics Reflectance Spectroscopy (FORS), Optical Coherence Tomography (OCT), and Scanning Electron Microscopy (SEM) were applied for chemical and morphological characterization of the samples.

Spectroscopic and Morphologic Investigation of Bronze Disease: Performance Evaluation of Portable Devices

Porcu D.
;
Innocenti S.;Striova J.;Fontana R.
2022

Abstract

Copper alloy artworks are particularly subjected to chloride attack, which may trigger bronze disease. Therefore, early identification of the phenomenon is crucial in order to stabilize the reactive copper chloride (CuCl) and remove the harmful corrosion products (atacamite and polymorphs). Confocal Raman Microspectroscopy (CRM) has proven to be effective for the detection of small amounts of atacamite, ascribable to the initial phases of corrosion. The handling of bronze artworks is often difficult or even impossible given their large size and weight, and sampling is not always allowed, making the use of portable instruments mandatory for on-site diagnostics. This paper proposes a method for the early detection of corrosion using non-invasive approaches. In this work, we present the results obtained from a set of artificially aged bronze samples with a suite of either laboratory (bench-top) or field (portable/transportable) instruments with the aim of highlighting their characteristics and performances in the diagnosis of bronze disease. Raman spectroscopy, Fiber Optics Reflectance Spectroscopy (FORS), Optical Coherence Tomography (OCT), and Scanning Electron Microscopy (SEM) were applied for chemical and morphological characterization of the samples.
2022
Istituto Nazionale di Ottica - INO
copper trihydroxychlorides
bronze disease
artificial patina formation
cultural heritage
OCT
Raman spectroscopy
FORS
SEM
File in questo prodotto:
File Dimensione Formato  
heritage-05-00184.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 5.74 MB
Formato Adobe PDF
5.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/547364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact