Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting.

Conversational rule creation in XR: user’s strategies in VR and AR automation

Manca M.;Santoro C.;Simeoli L.;Spano L. D.
2025

Abstract

Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
9783031954511
9783031954528
eXtended Reality, End-User Development, Immersive Authoring, Large Language Models, Rules
File in questo prodotto:
File Dimensione Formato  
PrePrint-conversational rule creation in XR.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 5.83 MB
Formato Adobe PDF
5.83 MB Adobe PDF Visualizza/Apri
preprint-ISEUD - tabelle allegati - FoglioFinale.pdf

accesso aperto

Descrizione: Tabelle Allegati
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 147.97 kB
Formato Adobe PDF
147.97 kB Adobe PDF Visualizza/Apri
PostPrint-conversational rule creation in XR.pdf

embargo fino al 13/06/2026

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.83 MB
Formato Adobe PDF
5.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PUBLISHED-conversational rule creation in XR.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/547861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact