This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine (Pinus pinea L.). The aim is to compare the efficiency and accuracy of the MLS with traditional dendrometric methods. The study established three marteloscopes, each covering a 50 m × 50 m plot area (0.25 ha). Traditional dendrometric methods involved a team georeferencing trees using a total station and measuring the diameter at breast height (DBH) and selected tree heights (H) to calculate the growing stock volume (GSV). The MLS survey was carried out by a two-person team, who processed the point cloud data with LiDAR 360 software to automatically identify the tree positions, DBH, and H. The methods were compared based on the time, cost, and simulated felling volume. The MLS method was more time-efficient, saving nearly one and a half hours per marteloscope, equivalent to EUR 170. This advantage was most significant in denser stands, especially the Italian cypress forest. Both methods were comparable in terms of accuracy for Douglas-fir and Stone pine stands, with no significant differences in felling number or volume, although greater differences were noted for the Italian cypress forest.

Efficiency of Mobile Laser Scanning for Digital Marteloscopes for Conifer Forests in the Mediterranean Region

Vangi, Elia;
2024

Abstract

This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine (Pinus pinea L.). The aim is to compare the efficiency and accuracy of the MLS with traditional dendrometric methods. The study established three marteloscopes, each covering a 50 m × 50 m plot area (0.25 ha). Traditional dendrometric methods involved a team georeferencing trees using a total station and measuring the diameter at breast height (DBH) and selected tree heights (H) to calculate the growing stock volume (GSV). The MLS survey was carried out by a two-person team, who processed the point cloud data with LiDAR 360 software to automatically identify the tree positions, DBH, and H. The methods were compared based on the time, cost, and simulated felling volume. The MLS method was more time-efficient, saving nearly one and a half hours per marteloscope, equivalent to EUR 170. This advantage was most significant in denser stands, especially the Italian cypress forest. Both methods were comparable in terms of accuracy for Douglas-fir and Stone pine stands, with no significant differences in felling number or volume, although greater differences were noted for the Italian cypress forest.
2024
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
digital twin
LiDAR laser scanner
silviculture
simulated forest operations
virtual forests
File in questo prodotto:
File Dimensione Formato  
forests-15-02202.pdf

accesso aperto

Descrizione: Efficiency of Mobile Laser Scanning for Digital Marteloscopes for Conifer Forests in the Mediterranean Region
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/547882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact