The nanoscale engineering of doped iron oxide magnetic nanoparticles has attracted significant interest in recent years for high-frequency theragnostic applications, where simultaneous diagnosis and therapy are required. In particular, their ability to generate localized heating under alternating magnetic fields makes them ideal candidates for magnetic hyperthermia, a noninvasive cancer treatment technique. However, understanding the complex interplay between multiple dopant cations and their impact on dynamic magnetic behavior remains a significant challenge. In this work, we present a comprehensive study on how two differently marked cations (Co2+ and Ga3+) can modify both the magnetic properties of these nanoparticles and their efficiency in heat generation under alternating magnetic fields. To this end, a series of nanoparticles with the formula CoxGa0.15Fe2.85-xO4 (0 < x < 0.3) was prepared via thermal decomposition, enabling the production of monodisperse nanocrystals with high crystallinity and precise stoichiometric control. Their exhaustive structural and magnetic characterization confirmed site-selective incorporation of Ga3+ into tetrahedral sites and Co2+ into octahedral sites. Increasing the cobalt content within the gallium-doped framework leads to enhanced magnetocrystalline anisotropy and higher saturation magnetization, both crucial parameters for efficient heat dissipation in magnetic hyperthermia. The study further demonstrates that the dynamic magnetic response of these nanostructures is strongly influenced by the interplay between doping composition, anisotropy, and the amplitude of the applied magnetic field. These findings highlight the effectiveness of nanoscale codoping strategies in fine-tuning magnetic behavior and optimizing the performance of spinel ferrite nanoparticles for advanced biomedical and technological applications, particularly high-frequency magnetic hyperthermia.
Nanoscale Engineering of Cobalt–Gallium Co-Doped Ferrites: A Strategy to Enhance High-Frequency Theranostic Magnetic Materials
Muzzi, Beatrice;
2025
Abstract
The nanoscale engineering of doped iron oxide magnetic nanoparticles has attracted significant interest in recent years for high-frequency theragnostic applications, where simultaneous diagnosis and therapy are required. In particular, their ability to generate localized heating under alternating magnetic fields makes them ideal candidates for magnetic hyperthermia, a noninvasive cancer treatment technique. However, understanding the complex interplay between multiple dopant cations and their impact on dynamic magnetic behavior remains a significant challenge. In this work, we present a comprehensive study on how two differently marked cations (Co2+ and Ga3+) can modify both the magnetic properties of these nanoparticles and their efficiency in heat generation under alternating magnetic fields. To this end, a series of nanoparticles with the formula CoxGa0.15Fe2.85-xO4 (0 < x < 0.3) was prepared via thermal decomposition, enabling the production of monodisperse nanocrystals with high crystallinity and precise stoichiometric control. Their exhaustive structural and magnetic characterization confirmed site-selective incorporation of Ga3+ into tetrahedral sites and Co2+ into octahedral sites. Increasing the cobalt content within the gallium-doped framework leads to enhanced magnetocrystalline anisotropy and higher saturation magnetization, both crucial parameters for efficient heat dissipation in magnetic hyperthermia. The study further demonstrates that the dynamic magnetic response of these nanostructures is strongly influenced by the interplay between doping composition, anisotropy, and the amplitude of the applied magnetic field. These findings highlight the effectiveness of nanoscale codoping strategies in fine-tuning magnetic behavior and optimizing the performance of spinel ferrite nanoparticles for advanced biomedical and technological applications, particularly high-frequency magnetic hyperthermia.| File | Dimensione | Formato | |
|---|---|---|---|
|
ACS Appl. Nano Mater. 2025, 8, 13817−13828.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.39 MB
Formato
Adobe PDF
|
6.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


