Organic solar cells have seen significant advancements through the use of non-fullerene acceptors, yet understanding the impact of molecular design on energetic disorder remains critical for optimizing material performance. In this work, we investigate three methodologies for quantifying static and dynamic excitonic disorder by analysing the temperature dependence of spectral features in thin film absorption and photoluminescence spectra. Our results demonstrate that fitting the temperature dependence of the first emission peak energy is the most reliable approach for assessing static disorder, while linewidth fitting of absorption spectra is best suited for quantifying dynamic disorder. Comparative case studies reveal that linear n-octyl side chains (e.g., in O-IDTBR and IDIC-4Cl) improve aggregation and induce the lowest static disorder, whereas bulkier side chains (e.g., 2-ethylhexyl and phenylhexyl) result in static disorder parameters which are approximately 50% larger in magnitude. For materials exhibiting strong aggregation, such as Y6, the limitations of current models underscore the need for caution when interpreting disorder metrics. These findings highlight the importance of side chain engineering in controlling the excitonic energetic landscape and provide guidance for the accurate assessment of the related disorder parameters in organic semiconductors.

Extracting disorder parameters from optical spectra of non-fullerene acceptors

Giannini, Samuele;
2025

Abstract

Organic solar cells have seen significant advancements through the use of non-fullerene acceptors, yet understanding the impact of molecular design on energetic disorder remains critical for optimizing material performance. In this work, we investigate three methodologies for quantifying static and dynamic excitonic disorder by analysing the temperature dependence of spectral features in thin film absorption and photoluminescence spectra. Our results demonstrate that fitting the temperature dependence of the first emission peak energy is the most reliable approach for assessing static disorder, while linewidth fitting of absorption spectra is best suited for quantifying dynamic disorder. Comparative case studies reveal that linear n-octyl side chains (e.g., in O-IDTBR and IDIC-4Cl) improve aggregation and induce the lowest static disorder, whereas bulkier side chains (e.g., 2-ethylhexyl and phenylhexyl) result in static disorder parameters which are approximately 50% larger in magnitude. For materials exhibiting strong aggregation, such as Y6, the limitations of current models underscore the need for caution when interpreting disorder metrics. These findings highlight the importance of side chain engineering in controlling the excitonic energetic landscape and provide guidance for the accurate assessment of the related disorder parameters in organic semiconductors.
2025
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
Disorder parameters; Excitonics; Material performance; Molecular design; Optical spectrum; Organics; Side-chains; Static disorder; Statics and dynamics; Temperature dependence
File in questo prodotto:
File Dimensione Formato  
d5mh00547g1.pdf

accesso aperto

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Mater. Horiz., 2025,12, 8048-8058.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/549143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact