Entity Linking (EL) plays a crucial role in Natural Language Processing (NLP) applications, enabling the disambiguation of entity mentions by linking them to their corresponding entries in a reference knowledge base (KB). Thanks to their deep contextual understanding capabilities, LLMs offer a new perspective to tackle EL, promising better results than traditional methods. Despite the impressive generalization capabilities of LLMs, linking less popular, long-tail entities remains challenging as these entities are often underrepresented in training data and knowledge bases. Furthermore, the long-tail EL task is an understudied problem, and limited studies address it with LLMs. In the present work, we assess the performance of two popular LLMs, GPT and LLama3, in a long-tail entity linking scenario. Using MHERCL v0.1, a manually annotated benchmark of sentences from domain-specific historical texts, we quantitatively compare the performance of LLMs in identifying and linking entities to their corresponding Wikidata entries against that of ReLiK, a state-of-the-art Entity Linking and Relation Extraction framework. Our preliminary experiments reveal that LLMs perform encouragingly well in long-tail EL, indicating that this technology can be a valuable adjunct in filling the gap between head and long-tail EL.

Evaluation of LLMs on long-tail entity linking in historical documents

Lenzi E.;
2024

Abstract

Entity Linking (EL) plays a crucial role in Natural Language Processing (NLP) applications, enabling the disambiguation of entity mentions by linking them to their corresponding entries in a reference knowledge base (KB). Thanks to their deep contextual understanding capabilities, LLMs offer a new perspective to tackle EL, promising better results than traditional methods. Despite the impressive generalization capabilities of LLMs, linking less popular, long-tail entities remains challenging as these entities are often underrepresented in training data and knowledge bases. Furthermore, the long-tail EL task is an understudied problem, and limited studies address it with LLMs. In the present work, we assess the performance of two popular LLMs, GPT and LLama3, in a long-tail entity linking scenario. Using MHERCL v0.1, a manually annotated benchmark of sentences from domain-specific historical texts, we quantitatively compare the performance of LLMs in identifying and linking entities to their corresponding Wikidata entries against that of ReLiK, a state-of-the-art Entity Linking and Relation Extraction framework. Our preliminary experiments reveal that LLMs perform encouragingly well in long-tail EL, indicating that this technology can be a valuable adjunct in filling the gap between head and long-tail EL.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Entity linking
Historical Documents
Large language models
Long-tail entities
File in questo prodotto:
File Dimensione Formato  
Lenzi_X-TAIL_CEUR-2024.pdf

accesso aperto

Descrizione: Evaluation of LLMs on Long-tail Entity Linking in Historical Documents
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 258.05 kB
Formato Adobe PDF
258.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/549342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact