The controlled and uncontrolled orbital re-entries occurred from 2010 to 2023 were reviewed. Excluding five Space Shuttle orbiters, the total mass re-entered into the atmosphere exceeded 4400 metric tons. In the five-year period 2019-2023, controlled re-entries accounted for nearly 62 % of the returned mass, including 31 % from Falcon 9 second stages alone, while uncontrolled re-entries of intact objects and large debris were responsible for the remaining 38 %. In 2023, the orbital re-entry mass dispersed as gas and particulate in the upper atmosphere was close to 600 metric tons. The ground casualty probability associated with the uncontrolled re-entry of satellites, orbital stages and large debris varied, on an annual basis, from 0.8 % in 2010 to 3.5 % in 2023, assuming the complete demise of all objects of less than 300 kg. In 2023, 70 % of the casualty probability was associated with orbital stages, 20 % with satellites and 10 % with large fragments.
Orbital re-entries of human-made space objects: drawbacks for the upper atmosphere and the safety of people
Pardini C.;Anselmo L.
2025
Abstract
The controlled and uncontrolled orbital re-entries occurred from 2010 to 2023 were reviewed. Excluding five Space Shuttle orbiters, the total mass re-entered into the atmosphere exceeded 4400 metric tons. In the five-year period 2019-2023, controlled re-entries accounted for nearly 62 % of the returned mass, including 31 % from Falcon 9 second stages alone, while uncontrolled re-entries of intact objects and large debris were responsible for the remaining 38 %. In 2023, the orbital re-entry mass dispersed as gas and particulate in the upper atmosphere was close to 600 metric tons. The ground casualty probability associated with the uncontrolled re-entry of satellites, orbital stages and large debris varied, on an annual basis, from 0.8 % in 2010 to 3.5 % in 2023, assuming the complete demise of all objects of less than 300 kg. In 2023, 70 % of the casualty probability was associated with orbital stages, 20 % with satellites and 10 % with large fragments.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pardini-Anselmo_JSSE-2025.pdf
accesso aperto
Descrizione: Orbital re-entries of human-made space objects: Drawbacks for the upper atmosphere and the safety of people
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.87 MB
Formato
Adobe PDF
|
4.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


