Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DIn- SAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm.
Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
Fabio Bovenga
;Antonella Belmonte;Alberto Refice;Ilenia Argentiero
2025
Abstract
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DIn- SAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bovenga et al. - 2025 - Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains.pdf
accesso aperto
Descrizione: Published article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
8.09 MB
Formato
Adobe PDF
|
8.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


