The suitable interfacial combination of CeO2 and oxidized carbon nanohorns (CeO2@oxCNHs) is instrumental to the control of the activity and selectivity in CO2 reduction reaction (CO2RR). This study presents a newly developed synthetic approach that integrates the CeO2 and CNH to form extended interfacial domains, resulting in a higher performance for CO2RR as compared with previously reported ceria-nanocarbon catalysts. In particular, detailed electrochemical characterization reveals that the CeO2@oxCNHs nanocomposite synthesized with this newly developed solvothermal method exhibits up to ten times higher current density (j) than its counterpart prepared by conventional sol-gel method and can be effectively integrated into a state-of-the-art gas diffusion electrode (GDE) device. The combination of high-surface area oxCNH with the gas diffusion electrode configuration boosts the CeO2 efficiency in converting CO2 to products involving C─C couplings as ethanol and acetaldehyde, even at very low overpotentials, offering a promising pathway for developing nanocomposite materials for CO2 reduction.

Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts Toward Enhanced CO2 Reduction Performance

Paolucci, Francesco;Fornasiero, Paolo
2025

Abstract

The suitable interfacial combination of CeO2 and oxidized carbon nanohorns (CeO2@oxCNHs) is instrumental to the control of the activity and selectivity in CO2 reduction reaction (CO2RR). This study presents a newly developed synthetic approach that integrates the CeO2 and CNH to form extended interfacial domains, resulting in a higher performance for CO2RR as compared with previously reported ceria-nanocarbon catalysts. In particular, detailed electrochemical characterization reveals that the CeO2@oxCNHs nanocomposite synthesized with this newly developed solvothermal method exhibits up to ten times higher current density (j) than its counterpart prepared by conventional sol-gel method and can be effectively integrated into a state-of-the-art gas diffusion electrode (GDE) device. The combination of high-surface area oxCNH with the gas diffusion electrode configuration boosts the CeO2 efficiency in converting CO2 to products involving C─C couplings as ethanol and acetaldehyde, even at very low overpotentials, offering a promising pathway for developing nanocomposite materials for CO2 reduction.
2025
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
CeO2, oxidized carbon nanohorns, CO2 reduction reaction (CO2RR), extended interfacial domains, electrocatalysis
File in questo prodotto:
File Dimensione Formato  
Adv Funct Materials - 2025 - Pollice - Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts.pdf

accesso aperto

Descrizione: earlyview article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
adfm70718-sup-0001-suppmat.pdf

accesso aperto

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/550421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact