In urgent edge computing scenarios, where rapid decision-making is paramount, traditional centralized methods often struggle with dynamic workloads. This paper introduces a decentralized Q-learning framework for workload offloading, enabling individual edge nodes to make adaptive decisions based solely on local observations and limited neighbor communications. By incorporating a cooperative mechanism—where agents weight neighbor Q-values according to their current load—the proposed method achieves enhanced task allocation under both normal and emergency conditions. Simulation results indicate improved responsiveness and resource efficiency, laying the groundwork for future studies on scalable, decentralized learning algorithms in real-world critical environments.

Decentralized Q-Learning for workload offloading in urgent edge computing scenarios

Carlini E.;Massa J.;Mordacchini M.
2025

Abstract

In urgent edge computing scenarios, where rapid decision-making is paramount, traditional centralized methods often struggle with dynamic workloads. This paper introduces a decentralized Q-learning framework for workload offloading, enabling individual edge nodes to make adaptive decisions based solely on local observations and limited neighbor communications. By incorporating a cooperative mechanism—where agents weight neighbor Q-values according to their current load—the proposed method achieves enhanced task allocation under both normal and emergency conditions. Simulation results indicate improved responsiveness and resource efficiency, laying the groundwork for future studies on scalable, decentralized learning algorithms in real-world critical environments.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Istituto di informatica e telematica - IIT
9783031960956
9783031960963
Q-learning, Workload offloading, Edge computing
File in questo prodotto:
File Dimensione Formato  
_To_Beniamino_2025__Second_Paper_on_Q_learning.pdf

embargo fino al 06/07/2026

Descrizione: Decentralized Q-Learning for Workload Offloading in Urgent Edge Computing Scenarios
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 343.19 kB
Formato Adobe PDF
343.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Carlini et al_LNDECT 2025.pdf

solo utenti autorizzati

Descrizione: Decentralized Q-Learning for Workload Offloading in Urgent Edge Computing Scenarios
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 493.88 kB
Formato Adobe PDF
493.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/551603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact