In urgent edge computing scenarios, where rapid decision-making is paramount, traditional centralized methods often struggle with dynamic workloads. This paper introduces a decentralized Q-learning framework for workload offloading, enabling individual edge nodes to make adaptive decisions based solely on local observations and limited neighbor communications. By incorporating a cooperative mechanism—where agents weight neighbor Q-values according to their current load—the proposed method achieves enhanced task allocation under both normal and emergency conditions. Simulation results indicate improved responsiveness and resource efficiency, laying the groundwork for future studies on scalable, decentralized learning algorithms in real-world critical environments.
Decentralized Q-Learning for workload offloading in urgent edge computing scenarios
Carlini E.;Massa J.;Mordacchini M.
2025
Abstract
In urgent edge computing scenarios, where rapid decision-making is paramount, traditional centralized methods often struggle with dynamic workloads. This paper introduces a decentralized Q-learning framework for workload offloading, enabling individual edge nodes to make adaptive decisions based solely on local observations and limited neighbor communications. By incorporating a cooperative mechanism—where agents weight neighbor Q-values according to their current load—the proposed method achieves enhanced task allocation under both normal and emergency conditions. Simulation results indicate improved responsiveness and resource efficiency, laying the groundwork for future studies on scalable, decentralized learning algorithms in real-world critical environments.| File | Dimensione | Formato | |
|---|---|---|---|
|
_To_Beniamino_2025__Second_Paper_on_Q_learning.pdf
embargo fino al 06/07/2026
Descrizione: Decentralized Q-Learning for Workload Offloading in Urgent Edge Computing Scenarios
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
343.19 kB
Formato
Adobe PDF
|
343.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Carlini et al_LNDECT 2025.pdf
solo utenti autorizzati
Descrizione: Decentralized Q-Learning for Workload Offloading in Urgent Edge Computing Scenarios
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
493.88 kB
Formato
Adobe PDF
|
493.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


