The bis-thiourea chiral solvating agent (CSA) BTDA enables the NMR-based determination of absolute configuration in N-3,5-dinitrobenzoyl (DNB) amino acid derivatives without requiring covalent derivatization. A reliable trend of the sense of nonequivalence and absolute configuration is found in both 1H and 13C NMR spectra. A dual-enantiomer approach, using (R,R)- and (S,S)-BTDA, generates diastereomeric complexes with the enantiopure substrate, and distinct spatial arrangements are reflected in consistent and interpretable Δδ values. The observed chemical shift differences correlate reliably with the stereochemistry of the chiral center and are further supported by ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) experiments and binding constants’ measurements, confirming the formation of stereoselective non-covalent complexes. This methodology extends the logic of Mosher’s analysis to solvating agents and remains effective even in samples containing single pure enantiomers of the amino acid derivative. The BTDA-based dual-CSA system thus represents a robust, non-derivatizing strategy for stereochemical assignment by NMR, combining operational simplicity with broad applicability to DNB derivatives of amino acids with free carboxyl function.

A Supramolecular Extension of Mosher’s Method: Absolute Configuration Assignment of N-Amino Acid Derivatives via Bis-Thiourea Chiral Solvating Agent

Federica Aiello
;
Gloria Uccello Barretta
;
2025

Abstract

The bis-thiourea chiral solvating agent (CSA) BTDA enables the NMR-based determination of absolute configuration in N-3,5-dinitrobenzoyl (DNB) amino acid derivatives without requiring covalent derivatization. A reliable trend of the sense of nonequivalence and absolute configuration is found in both 1H and 13C NMR spectra. A dual-enantiomer approach, using (R,R)- and (S,S)-BTDA, generates diastereomeric complexes with the enantiopure substrate, and distinct spatial arrangements are reflected in consistent and interpretable Δδ values. The observed chemical shift differences correlate reliably with the stereochemistry of the chiral center and are further supported by ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) experiments and binding constants’ measurements, confirming the formation of stereoselective non-covalent complexes. This methodology extends the logic of Mosher’s analysis to solvating agents and remains effective even in samples containing single pure enantiomers of the amino acid derivative. The BTDA-based dual-CSA system thus represents a robust, non-derivatizing strategy for stereochemical assignment by NMR, combining operational simplicity with broad applicability to DNB derivatives of amino acids with free carboxyl function.
2025
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Pisa
absolute configuration
association constant
chiral analysis
CSA
Mosher’s method
NMR
ROESY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/551886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact