We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model’s performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code (CurioSAI in Increasing biases can be more efficient than increasing weights, 2023. https://github.com/CuriosAI/dac-dev).

Increasing biases can be more efficient than increasing weights

Metta C.
;
2025

Abstract

We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model’s performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code (CurioSAI in Increasing biases can be more efficient than increasing weights, 2023. https://github.com/CuriosAI/dac-dev).
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Artificial Intelligence, Machine Learning, Deep Learning
File in questo prodotto:
File Dimensione Formato  
s11634-025-00649-2.pdf

solo utenti autorizzati

Descrizione: Increasing biases can be more efficient than increasing weights
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/552042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact