In this work, a unique approach was used to synthesise black coatings on aluminium alloys (AA) 6061 and 7075 for applications in the aerospace field. In detail, plasma electrolytic oxidation (PEO) technology was used, maintaining the voltage constant at a relatively low value (Vmax ≤ 292 V) during the process. NaVO3 additive was used in the silicate-based electrolyte to obtain a black colour. The coatings were characterised by SEM-EDS, XPS, XRD, VIS-NIR spectroscopy, and EIS. The presence of vanadium oxides in the PEO coatings was detected by EDS, XPS, and XRD analyses. PEO coatings on AA7075 produced with 10 g/L of NaVO3 exhibited exceptional optical characteristics, with a solar absorptance value of 95.3% in the VIS-NIR spectrum (wavelength range of 400–2000 nm). All the coatings improved the corrosion performances of the tested AA6061 and AA7075 by two or three orders of magnitude in 3.5 wt. % aqueous NaCl. Moreover, there was no sign of delamination, cracks, or any visible changes on coatings after thermal shock, performed by cycling samples between two extreme temperatures, −196 °C and 150 °C, respectively.

Formation of Black Coatings on AA7075 and AA6061 by Low-Voltage Plasma Electrolytic Oxidation for Use as Flat Solar Absorbers in the Aerospace

Pezzato, Luca;
2025

Abstract

In this work, a unique approach was used to synthesise black coatings on aluminium alloys (AA) 6061 and 7075 for applications in the aerospace field. In detail, plasma electrolytic oxidation (PEO) technology was used, maintaining the voltage constant at a relatively low value (Vmax ≤ 292 V) during the process. NaVO3 additive was used in the silicate-based electrolyte to obtain a black colour. The coatings were characterised by SEM-EDS, XPS, XRD, VIS-NIR spectroscopy, and EIS. The presence of vanadium oxides in the PEO coatings was detected by EDS, XPS, and XRD analyses. PEO coatings on AA7075 produced with 10 g/L of NaVO3 exhibited exceptional optical characteristics, with a solar absorptance value of 95.3% in the VIS-NIR spectrum (wavelength range of 400–2000 nm). All the coatings improved the corrosion performances of the tested AA6061 and AA7075 by two or three orders of magnitude in 3.5 wt. % aqueous NaCl. Moreover, there was no sign of delamination, cracks, or any visible changes on coatings after thermal shock, performed by cycling samples between two extreme temperatures, −196 °C and 150 °C, respectively.
2025
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
plasma electrolytic oxidation (PEO), black coatings, aluminium alloys (AA), flat absorbers, aerospace coatings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/552322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact