Radiotherapy resistance represents a critical aspect of cancer treatment, and molecular characterization is needed to explore the pathways and mechanisms involved. DNA repair, hypoxia, metabolic reprogramming, apoptosis, tumor microenvironment modulation, and activation of cancer stem cells are the primary mechanisms that regulate radioresistance, and understanding their complex interactions is essential for planning the correct therapeutic strategy. Proteomics has emerged as a key approach in precision medicine to study tumor heterogeneity and treatment response in cancer patients. The integration of mass spectrometry-based techniques with bioinformatics has enabled high-throughput, quantitative analyses to identify biomarkers, pathways, and new potential therapeutic targets. This review highlights recent advances in proteomic technologies and their application in identifying biomarkers predictive of radiosensitivity and radioresistance in different tumors, including head and neck, breast, lung, and prostate cancers. Sample variability, data interpretation, and the translation of findings into clinical practice remain challenging elements of proteomics. However, technological advancements support its application in a wide range of topics, allowing a comprehensive approach to radiobiology, which helps overcome radiation resistance. Ultimately, incorporating proteomics into the radiotherapy workflow offers significant potential for enhancing treatment efficacy, minimizing toxicity, and guiding precision oncology strategies.
Deciphering Radiotherapy Resistance: A Proteomic Perspective
Perico D.Primo
;Mauri P.
Ultimo
2025
Abstract
Radiotherapy resistance represents a critical aspect of cancer treatment, and molecular characterization is needed to explore the pathways and mechanisms involved. DNA repair, hypoxia, metabolic reprogramming, apoptosis, tumor microenvironment modulation, and activation of cancer stem cells are the primary mechanisms that regulate radioresistance, and understanding their complex interactions is essential for planning the correct therapeutic strategy. Proteomics has emerged as a key approach in precision medicine to study tumor heterogeneity and treatment response in cancer patients. The integration of mass spectrometry-based techniques with bioinformatics has enabled high-throughput, quantitative analyses to identify biomarkers, pathways, and new potential therapeutic targets. This review highlights recent advances in proteomic technologies and their application in identifying biomarkers predictive of radiosensitivity and radioresistance in different tumors, including head and neck, breast, lung, and prostate cancers. Sample variability, data interpretation, and the translation of findings into clinical practice remain challenging elements of proteomics. However, technological advancements support its application in a wide range of topics, allowing a comprehensive approach to radiobiology, which helps overcome radiation resistance. Ultimately, incorporating proteomics into the radiotherapy workflow offers significant potential for enhancing treatment efficacy, minimizing toxicity, and guiding precision oncology strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


