Specular highlights negatively affect photogram-metric 3D reconstructions. To mitigate this problem, we developed an AI-driven image processing technique able to remove specular highlights. We created a synthetic image dataset that reflects the objects, viewpoints, and specular behaviors found in real-world photogrammetric campaigns, and used it to train a U-Net model that can batch-process input images for photogrammetric reconstruction. The process was tested on both synthetic and real-world photos, demonstrating superior results compared to existing models in the literature.

AI-driven specular removal for 3D asset creation

Callieri M.;Corsini M.;Dutta S.;Giorgi D.
;
2025

Abstract

Specular highlights negatively affect photogram-metric 3D reconstructions. To mitigate this problem, we developed an AI-driven image processing technique able to remove specular highlights. We created a synthetic image dataset that reflects the objects, viewpoints, and specular behaviors found in real-world photogrammetric campaigns, and used it to train a U-Net model that can batch-process input images for photogrammetric reconstruction. The process was tested on both synthetic and real-world photos, demonstrating superior results compared to existing models in the literature.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-8-3315-1213-2
Solid modeling, Three-dimensional displays, Pipelines, Neural networks, Digital signal processing, Sun, Image reconstruction, Standards, Photogrammetry, Synthetic data
File in questo prodotto:
File Dimensione Formato  
Callieri et al_IEEE DSP-2025.pdf

solo utenti autorizzati

Descrizione: AI-Driven Specular Removal for 3D Asset Creation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.43 MB
Formato Adobe PDF
9.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Callieri et al_IEEE DSP-2025_postprint.pdf

accesso aperto

Descrizione: AI-Driven Specular Removal for 3D Asset Creation
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/552645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact