Dimensionality reduction is a hot research topic in data analysis today. Thanks to the advances in high performance computing technologies and in the engineering field, we entered in the so-called big-data era and an enormous quantity of data is available in every scientific area, ranging from social networking, economy and politics to e-health and life sciences. However, much of the data is highly redundant and can be efficiently brought down to a much smaller number of variables without a significant loss of information using different strategies.
Dimensionality Reduction
De Feis, Italia
2025
Abstract
Dimensionality reduction is a hot research topic in data analysis today. Thanks to the advances in high performance computing technologies and in the engineering field, we entered in the so-called big-data era and an enormous quantity of data is available in every scientific area, ranging from social networking, economy and politics to e-health and life sciences. However, much of the data is highly redundant and can be efficiently brought down to a much smaller number of variables without a significant loss of information using different strategies.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


