General relativity treats spacetime as dynamical and exhibits its breakdown at singularities. This failure is interpreted as evidence that quantum gravity is not a theory formulated within spacetime; instead, it must explain the very emergence of spacetime from deeper quantum degrees of freedom, thereby resolving singularities. Quantum gravity is therefore envisaged as an axiomatic structure, and algorithmic calculations acting on these axioms are expected to generate spacetime. However, Gödel’s incompleteness theorems, Tarski’s undefinability theorem, and Chaitin’s information-theoretic incompleteness establish intrinsic limits on any such algorithmic program. Together, these results imply that a wholly algorithmic “Theory of Everything’’ is impossible: certain facets of reality will remain computationally undecidable and can be accessed only through non-algorithmic understanding. We formalize this by constructing a “Meta-Theory of Everything’’ grounded in non-algorithmic understanding, showing how it can account for undecidable phenomena and demonstrating that the breakdown of computational descriptions of nature does not entail a breakdown of science. Because any putative simulation of the universe would itself be algorithmic, this framework also implies that the universe cannot be a simulation.
Consequences of Undecidability in Physics on the Theory of Everything
Marino F.
2025
Abstract
General relativity treats spacetime as dynamical and exhibits its breakdown at singularities. This failure is interpreted as evidence that quantum gravity is not a theory formulated within spacetime; instead, it must explain the very emergence of spacetime from deeper quantum degrees of freedom, thereby resolving singularities. Quantum gravity is therefore envisaged as an axiomatic structure, and algorithmic calculations acting on these axioms are expected to generate spacetime. However, Gödel’s incompleteness theorems, Tarski’s undefinability theorem, and Chaitin’s information-theoretic incompleteness establish intrinsic limits on any such algorithmic program. Together, these results imply that a wholly algorithmic “Theory of Everything’’ is impossible: certain facets of reality will remain computationally undecidable and can be accessed only through non-algorithmic understanding. We formalize this by constructing a “Meta-Theory of Everything’’ grounded in non-algorithmic understanding, showing how it can account for undecidable phenomena and demonstrating that the breakdown of computational descriptions of nature does not entail a breakdown of science. Because any putative simulation of the universe would itself be algorithmic, this framework also implies that the universe cannot be a simulation.| File | Dimensione | Formato | |
|---|---|---|---|
|
JHAP_Volume 5_Issue 2_Pages 10-21.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


