Non-proteinaceous and proteinaceous antinutrients in common bean (Phaseolus vulgaris L.) seeds can negatively affect human nutrition by reducing mineral bioavailability and impairing protein digestibility during digestion, respectively. However, many of these compounds also possess strong antioxidant properties that can help protect the plant from oxidative stress. While strategies to reduce antinutrient levels have been proposed to enhance the nutritional value of beans, less attention has been given to their potential protective functions, particularly under abiotic stress conditions. In the context of ongoing global climate change - marked by more frequent and prolonged drought and heat stress - there is a significant research gap concerning the influence of these environmental stresses on the accumulation and function of seed antinutrients in common beans. This perspective paper reviews current knowledge on the production of antioxidative antinutrients in response to abiotic stress and highlights the dual role of these compounds. It also outlines key research directions needed to better understand how climate-induced stress may alter antinutrient levels, and the implications this may have for both human nutrition and plant resilience. (c) 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Climate change and the antinutrient–antioxidant puzzle in common bean seeds

Cominelli E.;Sparvoli F.;Losa A.;
2025

Abstract

Non-proteinaceous and proteinaceous antinutrients in common bean (Phaseolus vulgaris L.) seeds can negatively affect human nutrition by reducing mineral bioavailability and impairing protein digestibility during digestion, respectively. However, many of these compounds also possess strong antioxidant properties that can help protect the plant from oxidative stress. While strategies to reduce antinutrient levels have been proposed to enhance the nutritional value of beans, less attention has been given to their potential protective functions, particularly under abiotic stress conditions. In the context of ongoing global climate change - marked by more frequent and prolonged drought and heat stress - there is a significant research gap concerning the influence of these environmental stresses on the accumulation and function of seed antinutrients in common beans. This perspective paper reviews current knowledge on the production of antioxidative antinutrients in response to abiotic stress and highlights the dual role of these compounds. It also outlines key research directions needed to better understand how climate-induced stress may alter antinutrient levels, and the implications this may have for both human nutrition and plant resilience. (c) 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
2025
Istituto di biologia e biotecnologia agraria (IBBA)
antinutrients
antioxidants
common bean
nutrition
phytic acid
plant stress
File in questo prodotto:
File Dimensione Formato  
2025, Vorster - J Sci Food Agric.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 547.31 kB
Formato Adobe PDF
547.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/553582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact