Fig (Ficus carica) orchards in the Salento peninsula (southeastern Apulia region, Italy) are increasingly affected by decline syndromes whose etiology remains poorly resolved. In this paper, we provide a first characterization of a complex disease outbreak, integrating field surveys, fungal isolation, molecular phylogenetics, and pathogenicity assays. Symptomatic trees displayed chlorosis, defoliation, cankers, vascular discoloration, and wilting, frequently associated with bark beetle galleries. Mycological analyses revealed a diverse assemblage of fungi, dominated by Botryosphaeriaceae (including Neofusicoccum algeriense, and Lasiodiplodia theobromae), the Fusarium solani species complex (notably Neocosmospora perseae), and Ceratocystis ficicola. While C. ficicola was isolated with lower frequency, its recovery from adult beetles—including Cryphalus dilutus—supports a role in insect-mediated dissemination in addition to soilborne infection. Pathogenicity tests demonstrated that N. algeriense and N. perseae, together with C. ficicola, caused severe vascular lesions and wilting, confirming their contribution to fig decline. By contrast, other Fusarioid strains showed no pathogenicity, consistent with their role as latent or stress-associated pathogens. This study provides the first evidence that N. algeriense and N. perseae act as pathogenic agents on fig, highlights their interaction with C. ficicola within a multifactorial decline syndrome, and identifies dual epidemiological pathways involving both soil/root infection and insect-facilitated dissemination via beetles such as C. dilutus. These findings redefine fig decline in the Salento peninsula (southern Italy) as a multifactorial disease rather than a single-pathogen outbreak, with significant implications for diagnosis, epidemiology, and integrated management strategies.
Unveiling a Disease Complex Threatening Fig (Ficus carica L.) Cultivation in Southern Italy
Vincenzo Cavalieri;
2025
Abstract
Fig (Ficus carica) orchards in the Salento peninsula (southeastern Apulia region, Italy) are increasingly affected by decline syndromes whose etiology remains poorly resolved. In this paper, we provide a first characterization of a complex disease outbreak, integrating field surveys, fungal isolation, molecular phylogenetics, and pathogenicity assays. Symptomatic trees displayed chlorosis, defoliation, cankers, vascular discoloration, and wilting, frequently associated with bark beetle galleries. Mycological analyses revealed a diverse assemblage of fungi, dominated by Botryosphaeriaceae (including Neofusicoccum algeriense, and Lasiodiplodia theobromae), the Fusarium solani species complex (notably Neocosmospora perseae), and Ceratocystis ficicola. While C. ficicola was isolated with lower frequency, its recovery from adult beetles—including Cryphalus dilutus—supports a role in insect-mediated dissemination in addition to soilborne infection. Pathogenicity tests demonstrated that N. algeriense and N. perseae, together with C. ficicola, caused severe vascular lesions and wilting, confirming their contribution to fig decline. By contrast, other Fusarioid strains showed no pathogenicity, consistent with their role as latent or stress-associated pathogens. This study provides the first evidence that N. algeriense and N. perseae act as pathogenic agents on fig, highlights their interaction with C. ficicola within a multifactorial decline syndrome, and identifies dual epidemiological pathways involving both soil/root infection and insect-facilitated dissemination via beetles such as C. dilutus. These findings redefine fig decline in the Salento peninsula (southern Italy) as a multifactorial disease rather than a single-pathogen outbreak, with significant implications for diagnosis, epidemiology, and integrated management strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


