In active single-pixel microscopy (SPM) the final image quality is mainly determined by the correct focusing of a set of structured light patterns over the sample under study. The correct pattern checking represents a recurrent time-consuming task. In this work a fast, reconstruction-less autofocusing correction method for Hadamard-based reflective SPM is presented. The defocus phenomenon in SPM is physically described, and numerically and experimentally evaluated. A focus tunable lens is employed to introduce a controllable phase and correct the defocusing aberration. The value of the focal length correction is evaluated by analyzing a reduced region of interest within the Hadamard frequency space which ensures fast and reconstructionless operation for the autofocus routine. The sum of the absolute value of the measured sampled frequencies reaches its maximum value when the defocus is fully corrected. The inverse of the calculated sum is minimized using the gradient descent algorithm within an average of 9 experimental iterations to reach the optimal phase value. The performance of the method is tested experimentally with a resolution test chart placed along the focusing axis.
Autofocusing method for active Hadamard single-pixel microscopy using gradient descent algorithms
Willstatter, Lindsey;Bonora, Stefano;Farina, Andrea;
2025
Abstract
In active single-pixel microscopy (SPM) the final image quality is mainly determined by the correct focusing of a set of structured light patterns over the sample under study. The correct pattern checking represents a recurrent time-consuming task. In this work a fast, reconstruction-less autofocusing correction method for Hadamard-based reflective SPM is presented. The defocus phenomenon in SPM is physically described, and numerically and experimentally evaluated. A focus tunable lens is employed to introduce a controllable phase and correct the defocusing aberration. The value of the focal length correction is evaluated by analyzing a reduced region of interest within the Hadamard frequency space which ensures fast and reconstructionless operation for the autofocus routine. The sum of the absolute value of the measured sampled frequencies reaches its maximum value when the defocus is fully corrected. The inverse of the calculated sum is minimized using the gradient descent algorithm within an average of 9 experimental iterations to reach the optimal phase value. The performance of the method is tested experimentally with a resolution test chart placed along the focusing axis.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tobón-Maya et al._2025_Optics and Lasers in Engineering(2).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.69 MB
Formato
Adobe PDF
|
3.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


