We present the first CMIP6-era multi-model intercomparison of the Southern Ocean (SO) temperature and sea-ice response to substantial Atlantic meridional overturning circulation (AMOC) weakening. Results are based on analysis of the North Atlantic Hosing Model Intercomparison Project, involving eight CMIP6 models under identical North Atlantic freshwater hosing. On multidecadal timescales, we find that southwards ocean heat transport into the SO increases, causing surface warming and sea-ice loss. Additionally, an atmospheric tropical-Antarctic teleconnection, identified here for the first time, causes regional temperature and sea-ice changes in the SO. Unlike previous studies, we find that the Amundsen Sea Low deepens for only some models. Overall, in the multi-model ensemble mean (multi-model range in brackets), over years 50–100 after AMOC weakening: SO surface air temperature warms by 0.3 (0.1–0.7)°C, sea level pressure (SLP) decreases by 30 (10–70) Pa, and sea-ice area decreases by 0.4 (−0.2–1.3) Mkm2. The teleconnection leads to regional differences between the response in the Indian sector and the Weddell Sea of 180 (80–320) Pa in SLP, 0.6 (0.5–1.4)°C in surface air temperature, and 0.1 (0.1–0.2) Mkm2 in sea-ice area. These SO heat transport, temperature, pressure, and sea-ice changes are small relative to the changes expected under future anthropogenic warming, despite the large and idealized 0.3 Sv hosing used to weaken the AMOC.

A Weakened AMOC Could Cause Southern Ocean Temperature and Sea‐Ice Change on Multidecadal Timescales

Bellomo, Katinka;Meccia, Virna L.;
2025

Abstract

We present the first CMIP6-era multi-model intercomparison of the Southern Ocean (SO) temperature and sea-ice response to substantial Atlantic meridional overturning circulation (AMOC) weakening. Results are based on analysis of the North Atlantic Hosing Model Intercomparison Project, involving eight CMIP6 models under identical North Atlantic freshwater hosing. On multidecadal timescales, we find that southwards ocean heat transport into the SO increases, causing surface warming and sea-ice loss. Additionally, an atmospheric tropical-Antarctic teleconnection, identified here for the first time, causes regional temperature and sea-ice changes in the SO. Unlike previous studies, we find that the Amundsen Sea Low deepens for only some models. Overall, in the multi-model ensemble mean (multi-model range in brackets), over years 50–100 after AMOC weakening: SO surface air temperature warms by 0.3 (0.1–0.7)°C, sea level pressure (SLP) decreases by 30 (10–70) Pa, and sea-ice area decreases by 0.4 (−0.2–1.3) Mkm2. The teleconnection leads to regional differences between the response in the Indian sector and the Weddell Sea of 180 (80–320) Pa in SLP, 0.6 (0.5–1.4)°C in surface air temperature, and 0.1 (0.1–0.2) Mkm2 in sea-ice area. These SO heat transport, temperature, pressure, and sea-ice changes are small relative to the changes expected under future anthropogenic warming, despite the large and idealized 0.3 Sv hosing used to weaken the AMOC.
2025
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
AMOC
climate models
CMIP6
sea ice
southern ocean
File in questo prodotto:
File Dimensione Formato  
2025-Diamond et al.-JGR.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.14 MB
Formato Adobe PDF
6.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact