We investigate the interaction between highly charged lipid bilayers in the presence of monovalent counterions. Neutron and X-ray reflectivity experiments show that the water layer between like-charged bilayers is thinner than for zwitterionic lipids, demonstrating the existence of counterintuitive electrostatic attractive interaction between them. Such attraction can be explained by taking into account the correlations between counterions within the Strong Coupling limit, which falls beyond the classical Poisson-Boltzmann theory of electrostatics. Our results show the limit of the Strong Coupling continuous theory in a highly confined geometry and are in agreement with a decrease in the water dielectric constant due to a surface charge-induced orientation of water molecules.

Attractive Interaction between Fully Charged Lipid Bilayers in a Strongly Confined Geometry

Gerelli, Yuri;
2019

Abstract

We investigate the interaction between highly charged lipid bilayers in the presence of monovalent counterions. Neutron and X-ray reflectivity experiments show that the water layer between like-charged bilayers is thinner than for zwitterionic lipids, demonstrating the existence of counterintuitive electrostatic attractive interaction between them. Such attraction can be explained by taking into account the correlations between counterions within the Strong Coupling limit, which falls beyond the classical Poisson-Boltzmann theory of electrostatics. Our results show the limit of the Strong Coupling continuous theory in a highly confined geometry and are in agreement with a decrease in the water dielectric constant due to a surface charge-induced orientation of water molecules.
2019
Istituto dei Sistemi Complessi - ISC
nanoconfinement
attractive interactions
bilayers
File in questo prodotto:
File Dimensione Formato  
mukhina-et-al-2019-attractive-interaction-between-fully-charged-lipid-bilayers-in-a-strongly-confined-geometry.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact