The immunological effects of lipopolysaccharides (LPSs) from gut microbiota remain poorly explored, overshadowed by the longstanding view of LPS as a prototypical pro-inflammatory molecule. Herein, we report the first comprehensive chemical and immunological characterization of LPS from Segatella copri DSM 18205, a prominent member of the human oral and intestinal microbiota. This LPS features a unique chemical architecture, including a mannose- and glucose-rich oligosaccharide (OS) and a highly heterogeneous, hypo-acylated lipid A domain, as elucidated by advanced mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Functionally, S. copri LPS displayed attenuated TLR4 activation and weak pro-inflammatory activity. Strikingly, high-dimensional cytometry by time-of-flight (CyTOF) revealed a selective preservation of CD14+CD16+ monocytes, immune subsets typically depleted by canonical enterobacterial LPSs. These findings identify S. copri LPS as a chemically and functionally distinct microbial signature, offering new insights into host-microbiota immune crosstalk and highlighting its potential for microbiome-informed immunomodulatory strategies.

Decoding a Gut Commensal Signal: Structural and Immunological Profiling of Segatella Copri Lipopolysaccharide

Giusi Barra;Marcello Ziaco;Marcello Mercogliano;Carmela Fusco;Giuliana D'Ippolito;Angelo Fontana;Fabrizio Chiodo;
2025

Abstract

The immunological effects of lipopolysaccharides (LPSs) from gut microbiota remain poorly explored, overshadowed by the longstanding view of LPS as a prototypical pro-inflammatory molecule. Herein, we report the first comprehensive chemical and immunological characterization of LPS from Segatella copri DSM 18205, a prominent member of the human oral and intestinal microbiota. This LPS features a unique chemical architecture, including a mannose- and glucose-rich oligosaccharide (OS) and a highly heterogeneous, hypo-acylated lipid A domain, as elucidated by advanced mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Functionally, S. copri LPS displayed attenuated TLR4 activation and weak pro-inflammatory activity. Strikingly, high-dimensional cytometry by time-of-flight (CyTOF) revealed a selective preservation of CD14+CD16+ monocytes, immune subsets typically depleted by canonical enterobacterial LPSs. These findings identify S. copri LPS as a chemically and functionally distinct microbial signature, offering new insights into host-microbiota immune crosstalk and highlighting its potential for microbiome-informed immunomodulatory strategies.
2025
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
glycobiology
Innate immunity
gut microbiota
File in questo prodotto:
File Dimensione Formato  
Angew Chem Int Ed - 2025 - De Simone Carone - Decoding a Gut Commensal Signal Structural and Immunological Profiling of.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact