We theoretically investigate a single fluorescent molecule as a hybrid quantum optical device, in which multiple external laser sources exert control of the vibronic states. In the high-saturation regime, a coherent interaction is established between the vibrational and electronic degrees of freedom, and molecules can simulate several cavity QED models, whereby a specific vibrational mode plays the role of the cavity mode. Focusing on the specific example where the system is turned into an analogue simulator of the quantum Rabi model, the steady state exhibits vibrational bi-modality resulting in a statistical mixture of highly non-classical vibronic cat states. Applying our paradigm to molecules with prominent spatial asymmetry and combining an optical excitation with a THz(IR) driving, the system can be turned into a single photon transducer. Two possible implementations are discussed based on the coupling to a subwavelength THz patch antenna or a resonant metamaterial. In a nutshell, this work assesses the role of molecules as an optomechanical quantum toolbox for creating hybrid entangled states of electrons, photons, and vibrations, hence enabling frequency conversion over very different energy scales.

Hybrid interfaces at the single quantum level in fluorescent molecules

Daniele De Bernardis
Primo
Writing – Original Draft Preparation
;
Hugo Levy-Falk
Secondo
Writing – Review & Editing
;
Elena Fanella
Writing – Review & Editing
;
Rocco Duquennoy
Writing – Review & Editing
;
Maja Colautti
Conceptualization
;
Costanza Toninelli
Ultimo
Supervision
2025

Abstract

We theoretically investigate a single fluorescent molecule as a hybrid quantum optical device, in which multiple external laser sources exert control of the vibronic states. In the high-saturation regime, a coherent interaction is established between the vibrational and electronic degrees of freedom, and molecules can simulate several cavity QED models, whereby a specific vibrational mode plays the role of the cavity mode. Focusing on the specific example where the system is turned into an analogue simulator of the quantum Rabi model, the steady state exhibits vibrational bi-modality resulting in a statistical mixture of highly non-classical vibronic cat states. Applying our paradigm to molecules with prominent spatial asymmetry and combining an optical excitation with a THz(IR) driving, the system can be turned into a single photon transducer. Two possible implementations are discussed based on the coupling to a subwavelength THz patch antenna or a resonant metamaterial. In a nutshell, this work assesses the role of molecules as an optomechanical quantum toolbox for creating hybrid entangled states of electrons, photons, and vibrations, hence enabling frequency conversion over very different energy scales.
2025
Istituto Nazionale di Ottica - INO
quantum optics
fluorescent molecules
optomechanics
THz
cavity QED
File in questo prodotto:
File Dimensione Formato  
De_Bernardis_2025_Quantum_Sci._Technol._10_045051.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact