Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. It is characterized by a high degree of heterogeneity, meaning that although these tumors may appear morphologically similar, they often exhibit distinct clinical outcomes. By associating specific molecular fingerprints with different clinical behaviors, high-throughput omics technologies (e.g., genomics, transcriptomics, and epigenomics) have significantly advanced our understanding of GBM, particularly of its extensive heterogeneity, by proposing a molecular classification for the implementation of precision medicine. However, due to the vast volume and complexity of data, the integrative analysis of omics data demands substantial computational power for processing, analyzing and interpreting GBM-related data. Artificial intelligence (AI), which mainly includes machine learning (ML) and deep learning (DL) computational approaches, now presents a unique opportunity to infer valuable biological insights from omics data and enhance the clinical management of GBM. In this review, we explored the potential of integrating multi-omics, imaging radiomics and clinical data with AI to uncover different aspects of GBM (molecular profiling, prognosis, and treatment) and improve its clinical management.
Artificial Intelligence-Driven Multi-Omics Approaches in Glioblastoma
Morello, GiovannaPrimo
;La Cognata, Valentina;Guarnaccia, Maria;Gentile, Giulia;Cavallaro, Sebastiano
Ultimo
2025
Abstract
Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. It is characterized by a high degree of heterogeneity, meaning that although these tumors may appear morphologically similar, they often exhibit distinct clinical outcomes. By associating specific molecular fingerprints with different clinical behaviors, high-throughput omics technologies (e.g., genomics, transcriptomics, and epigenomics) have significantly advanced our understanding of GBM, particularly of its extensive heterogeneity, by proposing a molecular classification for the implementation of precision medicine. However, due to the vast volume and complexity of data, the integrative analysis of omics data demands substantial computational power for processing, analyzing and interpreting GBM-related data. Artificial intelligence (AI), which mainly includes machine learning (ML) and deep learning (DL) computational approaches, now presents a unique opportunity to infer valuable biological insights from omics data and enhance the clinical management of GBM. In this review, we explored the potential of integrating multi-omics, imaging radiomics and clinical data with AI to uncover different aspects of GBM (molecular profiling, prognosis, and treatment) and improve its clinical management.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-09362.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


