In highly urbanised and industrialised settings, managing environmental pressures and enhancing urban resilience demand integrated, spatially explicit approaches. This study presents a methodological framework that integrates topographic data, land cover information, and open geodata to produce a high-resolution vulnerability map. A multi-criteria analysis was performed using indicators such as land use, population density, proximity to emission sources, vegetation cover, and sensitive services (e.g., schools and hospitals). The result is a high-resolution vulnerability map that classifies the urban, peri-urban, and coastal zones into five levels of environmental risk. These evaluation levels are derived from geospatial analyses combining pollutant dispersion modelling with land-use classification, enabling the identification of the most vulnerable urban zones. These findings support evidence-based planning and can guide local governments and environmental agencies in prioritising Nature-based Solutions (NBSs), enhancing ecological connectivity, and reducing exposure for vulnerable populations.
Improving Urban Resilience Through a Scalable Multi-Criteria Planning Approach
Carmine Massarelli
;Maria Silvia Binetti
2025
Abstract
In highly urbanised and industrialised settings, managing environmental pressures and enhancing urban resilience demand integrated, spatially explicit approaches. This study presents a methodological framework that integrates topographic data, land cover information, and open geodata to produce a high-resolution vulnerability map. A multi-criteria analysis was performed using indicators such as land use, population density, proximity to emission sources, vegetation cover, and sensitive services (e.g., schools and hospitals). The result is a high-resolution vulnerability map that classifies the urban, peri-urban, and coastal zones into five levels of environmental risk. These evaluation levels are derived from geospatial analyses combining pollutant dispersion modelling with land-use classification, enabling the identification of the most vulnerable urban zones. These findings support evidence-based planning and can guide local governments and environmental agencies in prioritising Nature-based Solutions (NBSs), enhancing ecological connectivity, and reducing exposure for vulnerable populations.| File | Dimensione | Formato | |
|---|---|---|---|
|
urbansci-09-00309-v2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


