Hardwood has a variety of applications and can be used for low-value products, such as firewood, or for high-value applications, achieving significantly higher prices. Therefore, assessing the quality of raw material is essential for allocating the wood to the most suitable end use. The aim of this study was to explore the use of the photogrammetry technique to determine dimensional characteristics and perform remote visual grading of round oak timber stored at a log yard. The results of the visual classification were then compared with non-destructive acoustic measurements to assess their level of agreement. Based on the point cloud obtained from photogrammetry, logs were classified into three quality groups according to the European standard for round timber grading. The diameter measurements of the logs obtained through the photogrammetry survey were comparable to those taken manually, with an average difference of 0.46 cm and a mean absolute error of 2.1 cm compared to field measurements. However, the log lengths measured from the 3D survey were, on average, 5 cm shorter than those obtained using a measuring tape. The visual classification performed on the 3D reconstruction was based on the evaluation of log size, knots, buckles, and sweep, resulting in 39%, 27%, and 24% of the pieces being grouped into the high-, medium-, and low-quality classes, respectively. Acoustic measurements, performed using both resonance and time-of-flight (ToF) methods, were highly correlated with each other and successfully distinguished the three quality classes only when sweep was excluded from the classification criteria. When curvature was also considered as a parameter for log grading, acoustic velocity only differentiated the lowest quality class from the other two.
Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys
Nocetti, Michela
;Aminti, Giovanni;Vicario, Margherita;Brunetti, Michele
2025
Abstract
Hardwood has a variety of applications and can be used for low-value products, such as firewood, or for high-value applications, achieving significantly higher prices. Therefore, assessing the quality of raw material is essential for allocating the wood to the most suitable end use. The aim of this study was to explore the use of the photogrammetry technique to determine dimensional characteristics and perform remote visual grading of round oak timber stored at a log yard. The results of the visual classification were then compared with non-destructive acoustic measurements to assess their level of agreement. Based on the point cloud obtained from photogrammetry, logs were classified into three quality groups according to the European standard for round timber grading. The diameter measurements of the logs obtained through the photogrammetry survey were comparable to those taken manually, with an average difference of 0.46 cm and a mean absolute error of 2.1 cm compared to field measurements. However, the log lengths measured from the 3D survey were, on average, 5 cm shorter than those obtained using a measuring tape. The visual classification performed on the 3D reconstruction was based on the evaluation of log size, knots, buckles, and sweep, resulting in 39%, 27%, and 24% of the pieces being grouped into the high-, medium-, and low-quality classes, respectively. Acoustic measurements, performed using both resonance and time-of-flight (ToF) methods, were highly correlated with each other and successfully distinguished the three quality classes only when sweep was excluded from the classification criteria. When curvature was also considered as a parameter for log grading, acoustic velocity only differentiated the lowest quality class from the other two.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_forest.pdf
accesso aperto
Descrizione: Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


