Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in the unusual 4+ oxidation state, although some Fe3+ is often present, depending on the synthesis and processing conditions and the type and amount of dopant. When doped with cerium at the Sr site, the SrFeO3−δ cubic structure is stabilized, more oxygen vacancies form and the Fe4+/Fe3+ redox couple plays a key role in its functional properties. Alone or combined with other materials, Ce-doped strontium ferrates can be successfully applied to wastewater treatment. Specific doping at the Fe site enhances their electronic conductivity for use as electrodes in solid oxide fuel cells and electrolyzers. Their oxygen storage capacity and oxygen mobility are also exploited in chemical looping reactions. The main limitations of these materials are SrCO3 formation, especially at the surface; their low surface area and porosity; and cation leaching at acidic pH values. However, these limitations can be partially addressed through careful selection of synthesis, processing and testing conditions. This review highlights the high versatility and efficiency of cerium-doped strontium ferrates for energy and environmental applications, both at low and high temperatures. The main literature on these compounds is reviewed to highlight the impact of their key properties and synthesis and processing parameters on their applicability as sustainable thermocatalysts, electrocatalysts, oxygen carriers and sensors.
Cerium-Doped Strontium Ferrate Perovskite Oxides: Sustainable Materials to Face Energy and Environmental Challenges
Maria Laura Tummino;Francesca Deganello
;
2025
Abstract
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in the unusual 4+ oxidation state, although some Fe3+ is often present, depending on the synthesis and processing conditions and the type and amount of dopant. When doped with cerium at the Sr site, the SrFeO3−δ cubic structure is stabilized, more oxygen vacancies form and the Fe4+/Fe3+ redox couple plays a key role in its functional properties. Alone or combined with other materials, Ce-doped strontium ferrates can be successfully applied to wastewater treatment. Specific doping at the Fe site enhances their electronic conductivity for use as electrodes in solid oxide fuel cells and electrolyzers. Their oxygen storage capacity and oxygen mobility are also exploited in chemical looping reactions. The main limitations of these materials are SrCO3 formation, especially at the surface; their low surface area and porosity; and cation leaching at acidic pH values. However, these limitations can be partially addressed through careful selection of synthesis, processing and testing conditions. This review highlights the high versatility and efficiency of cerium-doped strontium ferrates for energy and environmental applications, both at low and high temperatures. The main literature on these compounds is reviewed to highlight the impact of their key properties and synthesis and processing parameters on their applicability as sustainable thermocatalysts, electrocatalysts, oxygen carriers and sensors.| File | Dimensione | Formato | |
|---|---|---|---|
|
suschem-06-00024-2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri |
|
def-Suschem_cover.png
accesso aperto
Descrizione: cover issue
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.33 MB
Formato
image/png
|
6.33 MB | image/png | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


