A pruning-aware adaptive gradient method is proposed which classifies the variables in two sets before updating them using different strategies. This technique extends the “relevant/irrelevant" approach of Ding et al. (Adv Neural Inf Process Syst 32, 2019) and Zimmer et al. (Mathematical optimization for machine learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025) and allows a posteriori sparsification of the solution of model parameter fitting problems. The new method is proved to be convergent with a global rate of decrease of the averaged gradient’s norm of the form. Numerical experiments on several applications show that it is competitive with existing pruning-aware Frank-Wolfe algorithms, see e.g. Zimmer et al. (Mathematical optimization for machine learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025).

prunAdag: an adaptive pruning-aware gradient method

Porcelli M.;
2025

Abstract

A pruning-aware adaptive gradient method is proposed which classifies the variables in two sets before updating them using different strategies. This technique extends the “relevant/irrelevant" approach of Ding et al. (Adv Neural Inf Process Syst 32, 2019) and Zimmer et al. (Mathematical optimization for machine learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025) and allows a posteriori sparsification of the solution of model parameter fitting problems. The new method is proved to be convergent with a global rate of decrease of the averaged gradient’s norm of the form. Numerical experiments on several applications show that it is competitive with existing pruning-aware Frank-Wolfe algorithms, see e.g. Zimmer et al. (Mathematical optimization for machine learning: proceedings of the MATH+ thematic Einstein semester 2023, 2025).
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Adaptive first-order methods
Global convergence rate
Model pruning
Objective-function-free optimisation (OFFO)
File in questo prodotto:
File Dimensione Formato  
Porcelli_et al_Springer 2025.pdf

accesso aperto

Descrizione: prunAdag: an adaptive pruning-aware gradient method
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.56 MB
Formato Adobe PDF
7.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact