Rapid urbanization has transformed cityscapes worldwide, yet vertical urban growth (VUG) receives less attention than horizontal expansion. This study mapped and analyzed VUG patterns in Wuhan, China, from 2012 to 2020 based on a Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) dataset derived from a long time series of 375 COSMO-SkyMed SAR images. The methodology involved full-stack processing (analyzing all 375 images for a stable reference), sub-stack processing (independently processing sequential image subsets to track temporal changes), and post-processing to extract persistent scatterer (PS) candidates, estimate building heights, and analyze temporal changes. Validation was conducted through drone surveys and ground measurements in the Hanyang district. Results revealed substantial vertical expansion in central districts, with Hanyang experiencing a 66-fold increase in areas with buildings exceeding 90 m in height, while Hongshan district saw a 34-fold increase. Peripheral districts instead displayed more modest growth. Time series analysis and 3D visualization captured VUG temporal dynamics, identifying specific rapidly transforming urban sectors within Hanyang. Although the study is focused on one city with accuracy assessed on a spatially confined sample of more than 500 buildings, the findings suggest that PSInSAR height estimates from high-resolution SAR imagery can complement global settlement datasets (e.g., Global Human Settlement Layer, GHSL) in order to achieve better accuracy for individual building heights. Validation generally confirmed the accuracy of PSInSAR-derived height estimates, though challenges remain with noise and the distribution of PS. The location of PS along the building instead of the building rooftops can affect height estimation precision.
Monitoring Vertical Urban Growth in Rapidly Developing Cities with Persistent Scatterer Interferometry: A Multi-Temporal Assessment with COSMO-SkyMed Data in Wuhan, China
Cigna F.;Tapete D.
2025
Abstract
Rapid urbanization has transformed cityscapes worldwide, yet vertical urban growth (VUG) receives less attention than horizontal expansion. This study mapped and analyzed VUG patterns in Wuhan, China, from 2012 to 2020 based on a Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) dataset derived from a long time series of 375 COSMO-SkyMed SAR images. The methodology involved full-stack processing (analyzing all 375 images for a stable reference), sub-stack processing (independently processing sequential image subsets to track temporal changes), and post-processing to extract persistent scatterer (PS) candidates, estimate building heights, and analyze temporal changes. Validation was conducted through drone surveys and ground measurements in the Hanyang district. Results revealed substantial vertical expansion in central districts, with Hanyang experiencing a 66-fold increase in areas with buildings exceeding 90 m in height, while Hongshan district saw a 34-fold increase. Peripheral districts instead displayed more modest growth. Time series analysis and 3D visualization captured VUG temporal dynamics, identifying specific rapidly transforming urban sectors within Hanyang. Although the study is focused on one city with accuracy assessed on a spatially confined sample of more than 500 buildings, the findings suggest that PSInSAR height estimates from high-resolution SAR imagery can complement global settlement datasets (e.g., Global Human Settlement Layer, GHSL) in order to achieve better accuracy for individual building heights. Validation generally confirmed the accuracy of PSInSAR-derived height estimates, though challenges remain with noise and the distribution of PS. The location of PS along the building instead of the building rooftops can affect height estimation precision.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


