In this paper, a novel approach is proposed for modeling the temperature-dependent behavior of a surface acoustic wave (SAW) resonator, by using a combination of a lumped-element equivalent circuit model and artificial neural networks (ANNs). More specifically, the temperature dependence of the equivalent circuit parameters/elements (ECPs) is modeled using ANNs, making the equivalent circuit model temperature-dependent. The developed model is validated by using scattering parameter measurements performed on a SAW device with a nominal resonant frequency of 423.22 MHz and under different temperature conditions (i.e., from 0 °C to 100 °C). The extracted ANN-based model can be used for simulation of the SAW resonator RF characteristics in the considered temperature range without the need for further measurements or equivalent circuit extraction procedures. The accuracy of the developed ANN-based model is comparable to that of the original equivalent circuit model.

Development and Validation of an ANN-Based Approach for Temperature-Dependent Equivalent Circuit Modeling of SAW Resonators

Latino, Mariangela;
2023

Abstract

In this paper, a novel approach is proposed for modeling the temperature-dependent behavior of a surface acoustic wave (SAW) resonator, by using a combination of a lumped-element equivalent circuit model and artificial neural networks (ANNs). More specifically, the temperature dependence of the equivalent circuit parameters/elements (ECPs) is modeled using ANNs, making the equivalent circuit model temperature-dependent. The developed model is validated by using scattering parameter measurements performed on a SAW device with a nominal resonant frequency of 423.22 MHz and under different temperature conditions (i.e., from 0 °C to 100 °C). The extracted ANN-based model can be used for simulation of the SAW resonator RF characteristics in the considered temperature range without the need for further measurements or equivalent circuit extraction procedures. The accuracy of the developed ANN-based model is comparable to that of the original equivalent circuit model.
2023
Istituto per i Processi Chimico-Fisici - IPCF - Sede Messina
admittance parameters
artificial neural networks
equivalent circuit model
resonance
scattering parameter measurements
surface acoustic wave resonators
temperature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554876
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact