Vanadium dioxide (VO2) exhibits a temperature-driven insulator-to-metal transition, making it a promising material for optical and electronic applications. In this study, we perform a systematic first-principles investigation of the electronic and optical properties of VO2in its monoclinic (M1) and rutile (R) phases using density functional theory (DFT), many-body perturbation theory (G0W0), and the Bethe-Salpeter equation (BSE). Our results reveal that excitonic effects play a crucial role in accurately describing the dielectric response of the semiconducting M1phase, with G0W0/BSE and PBE/BSE approaches yielding optical spectra in excellent agreement with experimental data. For the metallic R phase, we find that the random phase approximation (RPA) at the PBE level provides a reliable description of its optical properties, particularly in the visible range, as long as intraband contributions are included. The frequency-dependent dielectric functions presented in this work achieve the required accuracy for large-scale optical simulations relevant to smart coatings and tunable infrared devices. To support further research and applications, we provide our computed optical data in an open-access repository on ZENODO.

From Insulator to Metal: Theoretical Assessment on the Optical Properties of Vanadium Dioxide Using Many-Body First-Principles Approaches

Cardoso Claudia;D'Amico P.;
2025

Abstract

Vanadium dioxide (VO2) exhibits a temperature-driven insulator-to-metal transition, making it a promising material for optical and electronic applications. In this study, we perform a systematic first-principles investigation of the electronic and optical properties of VO2in its monoclinic (M1) and rutile (R) phases using density functional theory (DFT), many-body perturbation theory (G0W0), and the Bethe-Salpeter equation (BSE). Our results reveal that excitonic effects play a crucial role in accurately describing the dielectric response of the semiconducting M1phase, with G0W0/BSE and PBE/BSE approaches yielding optical spectra in excellent agreement with experimental data. For the metallic R phase, we find that the random phase approximation (RPA) at the PBE level provides a reliable description of its optical properties, particularly in the visible range, as long as intraband contributions are included. The frequency-dependent dielectric functions presented in this work achieve the required accuracy for large-scale optical simulations relevant to smart coatings and tunable infrared devices. To support further research and applications, we provide our computed optical data in an open-access repository on ZENODO.
2025
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Density functional theory, insulator, metal, transition
File in questo prodotto:
File Dimensione Formato  
from-insulator-to-metal-theoretical-assessment-on-the-optical-properties-of-vanadium-dioxide-using-many-body-first.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/555984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact