: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.

Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC

Carpi, Sara
Primo
;
2024

Abstract

: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.
2024
Istituto Nanoscienze - NANO
hepatocellular carcinoma
metabolic dysfunction-associated steatohepatitis
metabolic dysfunction-associated steatotic liver disease
miRNA-based therapy
microRNA
tumorigenesis
File in questo prodotto:
File Dimensione Formato  
ijms-25-12229.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact