Light Detection and Ranging (LiDAR) has emerged as an important data source for monitoring forest resources. Terrestrial laser scanning (TLS) and Mobile laser scanning (MLS) have already shown high potential in further advancing forest inventory development. By enabling the retrieval of new forest attributes in addition to traditional ones, these technologies could drive forest inventories into a new paradigm by introducing innovative approaches to measuring and monitoring forests. The debate on the possible implementation of TLS and MLS in forest inventories, particularly in national forest inventories (NFIs), continues in both the scientific community and the public institutions. To date, few studies have evaluated the application of TLS and MLS technologies in large-scale forest inventories or assessed their practical operational limits. In this practice-oriented paper, we first detail TLS and MLS data acquisition and processing for tree attribute estimation, assessing their maturity and main limitations. We then explore three European case studies—from the French, Finnish, and Swiss National Forest Inventories (NFIs)—where these technologies have been tested. Based on these experiences, we identify the main constraints and challenges for operational implementation. Lastly, we discuss the prospects for TLS and MLS within the NFI context and the requirements for their successful adoption. We conclude that TLS and MLS should be viewed not as a replacement for, but as a complement to and enhancement of, traditional NFI practices. Emphasis should be placed on the new opportunities these technologies offer, rather than on direct comparisons with conventional methods

Terrestrial and mobile laser scanning for national forest inventories: From theory to implementation

Torresan, Chiara
2025

Abstract

Light Detection and Ranging (LiDAR) has emerged as an important data source for monitoring forest resources. Terrestrial laser scanning (TLS) and Mobile laser scanning (MLS) have already shown high potential in further advancing forest inventory development. By enabling the retrieval of new forest attributes in addition to traditional ones, these technologies could drive forest inventories into a new paradigm by introducing innovative approaches to measuring and monitoring forests. The debate on the possible implementation of TLS and MLS in forest inventories, particularly in national forest inventories (NFIs), continues in both the scientific community and the public institutions. To date, few studies have evaluated the application of TLS and MLS technologies in large-scale forest inventories or assessed their practical operational limits. In this practice-oriented paper, we first detail TLS and MLS data acquisition and processing for tree attribute estimation, assessing their maturity and main limitations. We then explore three European case studies—from the French, Finnish, and Swiss National Forest Inventories (NFIs)—where these technologies have been tested. Based on these experiences, we identify the main constraints and challenges for operational implementation. Lastly, we discuss the prospects for TLS and MLS within the NFI context and the requirements for their successful adoption. We conclude that TLS and MLS should be viewed not as a replacement for, but as a complement to and enhancement of, traditional NFI practices. Emphasis should be placed on the new opportunities these technologies offer, rather than on direct comparisons with conventional methods
2025
Istituto per la BioEconomia - IBE - Sede Secondaria San Michele all'Adige (TN)
Enhanced NFI Close-range remote sensing Ground-based LiDAR Point cloud Tree attribute accuracy Explorative implementation
File in questo prodotto:
File Dimensione Formato  
Holvoet_et_al_2025.pdf

accesso aperto

Descrizione: Terrestrial and mobile laser scanning for national forest inventories: From theory to implementation
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.98 MB
Formato Adobe PDF
9.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact