Several tumors have evolved the ability to evade the immune system by expressing programmed death ligand 1 (PD-L1; also known as programmed cell death 1 ligand 1) on the membrane of neoplastic cells. PD-L1 binds the receptor programmed cell death protein 1 (PD-1) on T cells, deactivating the immune response. Accordingly, PD-L1 has recently become a crucial target for cancer therapy. Yet, the molecular organization of PD-L1 on the membrane is still rather obscure. Here, we investigated the plasma membrane organization of PD-L1 by a multiscale fluorescence imaging toolbox reaching the nanoscale by super-resolution microscopy. Our results indicate that a major fraction of PD-L1 is largely engaged in membrane nanodomains of 25 nm mean radius, which in turn organize in an irregular mesoscopic lattice with mean interdomain distance of about 180 nm. The significant colocalization of PD-L1 with lipid raft markers, which we assessed from 200 to 250 nm down to < 10 nm, supports a raft-driven organization of PD-L1, which may follow its extended palmitoylation upon expression. This pattern was also demonstrated in living cells by visualizing PD-L1 diffusion at different spatial scales. The raft-orchestrated multiscale PD-L1 organization on the cell membrane may afford novel targets for improved immuno-oncology strategies.

Nanoscale engagement of programmed death ligand 1 (PD‐L1) in membrane lipid raft domains of cancer cells

Nepita, Irene;Castello, Marco;Diaspro, Alberto;Storti, Barbara
;
Bizzarri, Ranieri
Co-ultimo
;
2025

Abstract

Several tumors have evolved the ability to evade the immune system by expressing programmed death ligand 1 (PD-L1; also known as programmed cell death 1 ligand 1) on the membrane of neoplastic cells. PD-L1 binds the receptor programmed cell death protein 1 (PD-1) on T cells, deactivating the immune response. Accordingly, PD-L1 has recently become a crucial target for cancer therapy. Yet, the molecular organization of PD-L1 on the membrane is still rather obscure. Here, we investigated the plasma membrane organization of PD-L1 by a multiscale fluorescence imaging toolbox reaching the nanoscale by super-resolution microscopy. Our results indicate that a major fraction of PD-L1 is largely engaged in membrane nanodomains of 25 nm mean radius, which in turn organize in an irregular mesoscopic lattice with mean interdomain distance of about 180 nm. The significant colocalization of PD-L1 with lipid raft markers, which we assessed from 200 to 250 nm down to < 10 nm, supports a raft-driven organization of PD-L1, which may follow its extended palmitoylation upon expression. This pattern was also demonstrated in living cells by visualizing PD-L1 diffusion at different spatial scales. The raft-orchestrated multiscale PD-L1 organization on the cell membrane may afford novel targets for improved immuno-oncology strategies.
2025
Istituto Nanoscienze - NANO
PD‐L1
STED
STORM
confined diffusion
lipid rafts
File in questo prodotto:
File Dimensione Formato  
The FEBS Journal - 2025 - Civita - Nanoscale engagement of programmed death ligand 1 PDâ L1 in membrane lipid raft domains.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.58 MB
Formato Adobe PDF
3.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact