Circular RNAs are a class of stable non-coding RNAs generated through a back-splicing mechanism. They are now recognized as central players in cell function and are no longer considered byproducts of transcription. CircRNAs regulate gene expression at the transcriptional, post-transcriptional, and translational levels by interacting with various molecules. They act as sponges for miRNAs and proteins, molecular scaffolds, and can also be translated into peptides. Although advances in next-generation sequencing and PCR methods have improved their identification and quantification, technical and bioinformatic challenges remain. Increasing evidence shows their involvement in cardiovascular diseases such as heart failure, hypertrophy, fibrosis, and atherosclerosis, with protective or deleterious effects depending on the context. Given their presence in biological fluids and extracellular vesicles, they can be considered promising biomarkers, but their therapeutic applications are still under investigation. Future studies including a better understanding of their mechanisms of action, the development of standardized validation methods, and potential clinical applications (prevention, early diagnosis, personalized therapies) in diseases are still needed. This review provides an updated overview of the knowledge regarding circRNAs and their translational role in health and disease with a particular focus on cardiovascular diseases.
Circular RNAs in Cardiovascular Physiopathology: From Molecular Mechanisms to Therapeutic Opportunities
Roncarati R.
2025
Abstract
Circular RNAs are a class of stable non-coding RNAs generated through a back-splicing mechanism. They are now recognized as central players in cell function and are no longer considered byproducts of transcription. CircRNAs regulate gene expression at the transcriptional, post-transcriptional, and translational levels by interacting with various molecules. They act as sponges for miRNAs and proteins, molecular scaffolds, and can also be translated into peptides. Although advances in next-generation sequencing and PCR methods have improved their identification and quantification, technical and bioinformatic challenges remain. Increasing evidence shows their involvement in cardiovascular diseases such as heart failure, hypertrophy, fibrosis, and atherosclerosis, with protective or deleterious effects depending on the context. Given their presence in biological fluids and extracellular vesicles, they can be considered promising biomarkers, but their therapeutic applications are still under investigation. Future studies including a better understanding of their mechanisms of action, the development of standardized validation methods, and potential clinical applications (prevention, early diagnosis, personalized therapies) in diseases are still needed. This review provides an updated overview of the knowledge regarding circRNAs and their translational role in health and disease with a particular focus on cardiovascular diseases.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-09725.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


