Alkali metal intercalation of graphene layers has been of particular interest due to potential applications in electronics, energy storage, and catalysis. Rubidium (Rb) is one of the largest alkali metals and among the least investigated as an intercalant. Here, we report a systematic investigation, with a multi-technique approach, of the phase formation of Rb under epitaxial monolayer graphene on SiC(0001). We explore a wide phase space with two control parameters: the Rb density (i.e., deposition time) and sample temperature (i.e., room and low temperature). We reveal the emergence of (2 × 2) and R30° structures formed by a single alkali metal layer intercalated between monolayer graphene and the interfacial C-rich reconstructed surface, also known as the buffer layer. Rb intercalation also results in strong n-type doping of the graphene layer. Upon progressively annealing to higher temperatures, we first reveal the diffusion of Rb atoms, which results in the enlargement of intercalated areas. As desorption sets in, intercalated regions progressively shrink and fragment. Eventually, at approximately 600 °C, the initial surface is retrieved, indicating the reversibility of the intercalation process.

Rubidium intercalation in epitaxial monolayer graphene

Veronesi S.;Locatelli A.;Heun S.
2025

Abstract

Alkali metal intercalation of graphene layers has been of particular interest due to potential applications in electronics, energy storage, and catalysis. Rubidium (Rb) is one of the largest alkali metals and among the least investigated as an intercalant. Here, we report a systematic investigation, with a multi-technique approach, of the phase formation of Rb under epitaxial monolayer graphene on SiC(0001). We explore a wide phase space with two control parameters: the Rb density (i.e., deposition time) and sample temperature (i.e., room and low temperature). We reveal the emergence of (2 × 2) and R30° structures formed by a single alkali metal layer intercalated between monolayer graphene and the interfacial C-rich reconstructed surface, also known as the buffer layer. Rb intercalation also results in strong n-type doping of the graphene layer. Upon progressively annealing to higher temperatures, we first reveal the diffusion of Rb atoms, which results in the enlargement of intercalated areas. As desorption sets in, intercalated regions progressively shrink and fragment. Eventually, at approximately 600 °C, the initial surface is retrieved, indicating the reversibility of the intercalation process.
2025
Istituto Nanoscienze - NANO
Rubidium, intercalation, graphene
File in questo prodotto:
File Dimensione Formato  
Nanoscale17(2025)12465.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact