Translationally invariant flatband Hamiltonians with interactions lead to a many-body localization transition. Our models are obtained from single-particle lattices hosting a mix of flat and dispersive bands, and equipped with fine-tuned two–body interactions. Fine-tuning of the interaction results in an extensive set of local conserved charges and a fragmentation of the Hilbert space into irreducible sectors. In each sector, the conserved charges originate from the flatband and act as an effective disorder inducing a transition between ergodic and localized phases upon variation of the interaction strength. Such fine-tuning is possible in arbitrary lattice dimensions and for any many-body statistics. We present computational evidence for this transition with spinless fermions.

Many-body localization transition from flat-band fine tuning

Danieli, Carlo
;
2022

Abstract

Translationally invariant flatband Hamiltonians with interactions lead to a many-body localization transition. Our models are obtained from single-particle lattices hosting a mix of flat and dispersive bands, and equipped with fine-tuned two–body interactions. Fine-tuning of the interaction results in an extensive set of local conserved charges and a fragmentation of the Hilbert space into irreducible sectors. In each sector, the conserved charges originate from the flatband and act as an effective disorder inducing a transition between ergodic and localized phases upon variation of the interaction strength. Such fine-tuning is possible in arbitrary lattice dimensions and for any many-body statistics. We present computational evidence for this transition with spinless fermions.
2022
Istituto dei Sistemi Complessi - ISC
flat bands, quantum scars, many-body localization
File in questo prodotto:
File Dimensione Formato  
PRB_2022.pdf

accesso aperto

Descrizione: Many-body localization transition from flat-band fine tuning
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact