Carbon dots (CDs) are gaining significant attention as multifunctional nanomaterials due to their optical properties, aqueous dispersibility, redox activity, and overall biocompatibility. This review presents a critical overview of the recent advances concerning the application of CDs in nucleic acid-centered diagnostics, with a specific focus on oxidative DNA damage. The use of CDs for the detection of oxidative DNA damage biomarkers, such as 8-oxo-2 '-deoxyguanosine (8-oxo-dG), and their potential roles as fluorescent probes in environments related to oxidative stress is discussed in detail. The relationship between surface functionalization and biological performance is examined, highlighting how physicochemical properties dictate both the beneficial and adverse biological responses to CDs. Remarkably, CDs can act as antioxidants, mitigating oxidative damage, or as pro-oxidants, inducing cytotoxic effects, an ambivalent behavior that can be strategically harnessed for cytoprotection or selective tumor cell killing. Overall, this review outlines how CDs can contribute to the development of precision tools for studying oxidative environments affecting nucleic acids, with important implications for both diagnostics and redox-based therapeutic strategies of human diseases.

Carbon Dots for Nucleic Acid-Based Diagnostics and Therapeutics: Focus on Oxidative DNA Damage

Pascucci B.;Moccia M.;Saviano M.;Masi A.
2025

Abstract

Carbon dots (CDs) are gaining significant attention as multifunctional nanomaterials due to their optical properties, aqueous dispersibility, redox activity, and overall biocompatibility. This review presents a critical overview of the recent advances concerning the application of CDs in nucleic acid-centered diagnostics, with a specific focus on oxidative DNA damage. The use of CDs for the detection of oxidative DNA damage biomarkers, such as 8-oxo-2 '-deoxyguanosine (8-oxo-dG), and their potential roles as fluorescent probes in environments related to oxidative stress is discussed in detail. The relationship between surface functionalization and biological performance is examined, highlighting how physicochemical properties dictate both the beneficial and adverse biological responses to CDs. Remarkably, CDs can act as antioxidants, mitigating oxidative damage, or as pro-oxidants, inducing cytotoxic effects, an ambivalent behavior that can be strategically harnessed for cytoprotection or selective tumor cell killing. Overall, this review outlines how CDs can contribute to the development of precision tools for studying oxidative environments affecting nucleic acids, with important implications for both diagnostics and redox-based therapeutic strategies of human diseases.
2025
Istituto di Cristallografia - IC
Istituto di Cristallografia - IC - Sede Secondaria Montelibretti (RM)
carbon dots
disease diagnostics
nucleic acid
oxidative DNA damage
File in questo prodotto:
File Dimensione Formato  
ijms-26-08077-v2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact