: Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.

Use of Chemicals and Biological Control Agents as Activators of Plant Defense Against Endoparasitic Sedentary Nematodes

Molinari S.
2024

Abstract

: Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.
2024
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Bari
9781071636374
9781071636381
Antioxidants
Biocontrol agents
Defense activators
Nematode management
Root-knot nematodes
Salicylic acid
Vegetable crops
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact