In this work, we present accLB, a high-performance Fortran-based lattice Boltzmann (LB) solver tailored to multiphase turbulent flows on multi-GPU architectures. The code couples a conservative phase-field formulation of the Allen–Cahn equation with a thread-safe, regularized LB method to capture complex interface dynamics. Designed from the ground up for HPC environments, accLB employs MPI for distributed memory parallelism and OpenACC for GPU acceleration, achieving excellent portability and scalability on leading pre-exascale systems such as Leonardo and LUMI. Benchmark tests demonstrate strong and weak scaling efficiencies on multiple GPUs. Physical validation includes direct numerical simulations of homogeneous isotropic turbulence (HIT). Further, we examine bubble-laden HIT and observe a transition to a -3 energy scaling, as in experiments and theoretical predictions, due to bubble-induced dissipation, along with enhanced small-scale intermittency. These results highlight accLB as a robust and scalable platform for the simulation of multiphase turbulence in extreme computational regimes.
AccLB: A High-Performance Lattice Boltzmann Code for Multiphase Turbulence on Multi-Gpu Architectures
Lauricella M.Primo
Writing – Review & Editing
;Succi S.Writing – Review & Editing
;Montessori A.
Writing – Review & Editing
2025
Abstract
In this work, we present accLB, a high-performance Fortran-based lattice Boltzmann (LB) solver tailored to multiphase turbulent flows on multi-GPU architectures. The code couples a conservative phase-field formulation of the Allen–Cahn equation with a thread-safe, regularized LB method to capture complex interface dynamics. Designed from the ground up for HPC environments, accLB employs MPI for distributed memory parallelism and OpenACC for GPU acceleration, achieving excellent portability and scalability on leading pre-exascale systems such as Leonardo and LUMI. Benchmark tests demonstrate strong and weak scaling efficiencies on multiple GPUs. Physical validation includes direct numerical simulations of homogeneous isotropic turbulence (HIT). Further, we examine bubble-laden HIT and observe a transition to a -3 energy scaling, as in experiments and theoretical predictions, due to bubble-induced dissipation, along with enhanced small-scale intermittency. These results highlight accLB as a robust and scalable platform for the simulation of multiphase turbulence in extreme computational regimes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


