We introduce a regularized fluctuating lattice Boltzmann model (Reg-FLBM) for the D3Q27 lattice, which incorporates thermal fluctuations through Hermite-based projections to ensure compliance with the fluctuation-dissipation theorem. By leveraging the recursive regularization framework, the model achieves thermodynamic consistency for both hydrodynamic and ghost modes. Compared to the conventional single-relaxation-time BGK-FLBM, the Reg-FLBM provides improved stability and a more accurate description of thermal fluctuations. The implementation is optimized for large-scale parallel simulations on graphics processing unit-accelerated architectures, enabling systematic investigation of fluctuation-driven phenomena in mesoscale and nanoscale fluid systems.

Regularized fluctuating lattice Boltzmann model

Lauricella M.
Writing – Review & Editing
;
Montessori A.
Writing – Review & Editing
;
Tiribocchi A.
Writing – Review & Editing
;
Succi S.
Writing – Review & Editing
2025

Abstract

We introduce a regularized fluctuating lattice Boltzmann model (Reg-FLBM) for the D3Q27 lattice, which incorporates thermal fluctuations through Hermite-based projections to ensure compliance with the fluctuation-dissipation theorem. By leveraging the recursive regularization framework, the model achieves thermodynamic consistency for both hydrodynamic and ghost modes. Compared to the conventional single-relaxation-time BGK-FLBM, the Reg-FLBM provides improved stability and a more accurate description of thermal fluctuations. The implementation is optimized for large-scale parallel simulations on graphics processing unit-accelerated architectures, enabling systematic investigation of fluctuation-driven phenomena in mesoscale and nanoscale fluid systems.
2025
Istituto Applicazioni del Calcolo ''Mauro Picone''
Physical quantities, Electronic noise, High performance computing, Numerical algorithms, Supercomputer, Fluid systems, Hydrodynamics, Lattice Boltzmann methods, Thermal fluctuations, Nonequilibrium statistical mechanics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/556628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact