Longitudinal data provide a powerful source of information for tracking disease progression over time; yet, identifying early signs of prodromal symptoms remains a significant challenge. This paper introduces LongitProgression, a Python software tool providing computer scientists and physicians with an effective tool for longitudinal cluster analysis. It combines the k-means clustering technique with time-series analysis to account for the temporal nature of medical data and uncover latent behaviour patterns. It also provides preprocessing, visualization, and statistical tools, enabling researchers to explore and interpret complex multi-dimensional datasets. The software is publicly accessible to data scientists and domain experts, with a user-friendly interface and comprehensive documentation. LongitProgression has been successfully employed in diverse scientific papers, underscoring its efficacy and versatility as a valuable tool for longitudinal studies.

LongitProgression: A Python Tool for Studying Factors of Disease Progression through Multivariate Longitudinal Clustering

Patrizia Ribino
;
Giovanni Paragliola;Claudia Di Napoli;Maria Mannone
2025

Abstract

Longitudinal data provide a powerful source of information for tracking disease progression over time; yet, identifying early signs of prodromal symptoms remains a significant challenge. This paper introduces LongitProgression, a Python software tool providing computer scientists and physicians with an effective tool for longitudinal cluster analysis. It combines the k-means clustering technique with time-series analysis to account for the temporal nature of medical data and uncover latent behaviour patterns. It also provides preprocessing, visualization, and statistical tools, enabling researchers to explore and interpret complex multi-dimensional datasets. The software is publicly accessible to data scientists and domain experts, with a user-friendly interface and comprehensive documentation. LongitProgression has been successfully employed in diverse scientific papers, underscoring its efficacy and versatility as a valuable tool for longitudinal studies.
2025
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Napoli
Longitudinal ClusteringDisease ProgressionPython
File in questo prodotto:
File Dimensione Formato  
691dce4bd18fd.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/557681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact