In this article, we attempt to make a conceptual bridge between the research in biology, pre-biotic chemistry, biomimetics, and the tools used in organic bioelectronics in terms of materials and devices. The goal is discussing how materials and devices of organic bioelectronics can be exploited and used at the interface with biology, but also how, and at what extent, they can be adapted to mimicking nature-inspired properties, herein including unconventional computing strategies. The idea is to provide new hints and hypotheses for designing niche experiments that could benefit from a proper interaction, even at a basic communicative level, between materials science and biotechnology. The finale long-term vision goal being the vision of collecting experimental data that may help to made a step forward toward the implementation of the transition from inanimate objects to animated beings. The mathematical model canonically considered in this work is the Navier-Stokes-Nernst-Planck (NPNS) model, which is often used to model a charged continuum system such as the organic electrochemical transistors.
Advances in Prebiotic Chemistry: The Potential of Analog Computing and Navier-Stokes-Nernst-Planck (NPNS) Modeling in Organic Electrochemical Transistors (OECTs)
Giuseppe De Giorgio;Giuseppe Tarabella;Pasquale D'Angelo;
2025
Abstract
In this article, we attempt to make a conceptual bridge between the research in biology, pre-biotic chemistry, biomimetics, and the tools used in organic bioelectronics in terms of materials and devices. The goal is discussing how materials and devices of organic bioelectronics can be exploited and used at the interface with biology, but also how, and at what extent, they can be adapted to mimicking nature-inspired properties, herein including unconventional computing strategies. The idea is to provide new hints and hypotheses for designing niche experiments that could benefit from a proper interaction, even at a basic communicative level, between materials science and biotechnology. The finale long-term vision goal being the vision of collecting experimental data that may help to made a step forward toward the implementation of the transition from inanimate objects to animated beings. The mathematical model canonically considered in this work is the Navier-Stokes-Nernst-Planck (NPNS) model, which is often used to model a charged continuum system such as the organic electrochemical transistors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


