This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, using ultrasonication as well as a third component (polysorbate) in the dope solution. The obtained flexible thin films were investigated in terms of morphology, thermal properties, characterized by SEM, FT-IR, DSC, TGA, and gas permeation tests. The response to temperature variations of gas permeation through these nanocomposite specimens was also investigated in the temperature range of 25–55 °C. Defect-free samples were successfully obtained even at a significantly high loading of CNTs (up to 18 wt%), without a pre-treatment of the fillers. A remarkable enhancement of gas permeability upon the nanocarbons loading was reached, with a threshold value at a loading of ca. 7 wt%. The addition of polysorbates in the ternary MMMs further improves the dispersion of the filler, enhancing also the permselectivity of the membrane.
Binary and Ternary Nanocomposite Membranes for Gas Separation Incorporating Finely Dispersed Carbon Nanotubes in a Polyether Block Amide Matrix
Vuono, Danilo;Clarizia, Gabriele
;Zampino, Daniela Clotilde;Bernardo, Paola
2025
Abstract
This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, using ultrasonication as well as a third component (polysorbate) in the dope solution. The obtained flexible thin films were investigated in terms of morphology, thermal properties, characterized by SEM, FT-IR, DSC, TGA, and gas permeation tests. The response to temperature variations of gas permeation through these nanocomposite specimens was also investigated in the temperature range of 25–55 °C. Defect-free samples were successfully obtained even at a significantly high loading of CNTs (up to 18 wt%), without a pre-treatment of the fillers. A remarkable enhancement of gas permeability upon the nanocarbons loading was reached, with a threshold value at a loading of ca. 7 wt%. The addition of polysorbates in the ternary MMMs further improves the dispersion of the filler, enhancing also the permselectivity of the membrane.| File | Dimensione | Formato | |
|---|---|---|---|
|
polymers-17-00314 (2025).pdf
accesso aperto
Licenza:
Creative commons
Dimensione
8.57 MB
Formato
Adobe PDF
|
8.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


