This study explores a physics-informed convolutional neural network (CNN) ensemble for Intravoxel Incoherent Motion (IVIM) parameters estimation in diffusion-weighted MRI (DW-MRI). A U-Net was trained on simulated phantoms under different noise conditions and evaluated using Median Absolute Error and Robust Coefficient of Variation. The ensemble approach improved robustness and enabled uncertainty quantification through variance maps. When tested on in-vivo mouse brain images, the CNN estimates aligned well with Bayesian results, particularly for D and D* parameters. The findings suggest that ensembling improves IVIM accuracy and reliability while also enabling uncertainty quantification.

Physics-Informed CNN Ensemble for Improved Tissue Perfusion and Diffusion Estimation with Uncertainty Quantification in IVIM MRI

Casali N.
Primo
;
Brusaferri A.;Rizzo G.;Mastropietro A.
Ultimo
2025

Abstract

This study explores a physics-informed convolutional neural network (CNN) ensemble for Intravoxel Incoherent Motion (IVIM) parameters estimation in diffusion-weighted MRI (DW-MRI). A U-Net was trained on simulated phantoms under different noise conditions and evaluated using Median Absolute Error and Robust Coefficient of Variation. The ensemble approach improved robustness and enabled uncertainty quantification through variance maps. When tested on in-vivo mouse brain images, the CNN estimates aligned well with Bayesian results, particularly for D and D* parameters. The findings suggest that ensembling improves IVIM accuracy and reliability while also enabling uncertainty quantification.
2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
9783031958403
9783031958410
Convolution Neural Networks
Deep Learning
IVIM
MRI
Uncertainty Quantification
File in questo prodotto:
File Dimensione Formato  
Pagine da 978-3-031-95841-0-1.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 800.11 kB
Formato Adobe PDF
800.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/558124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact