Glioblastoma (GBM) is a highly aggressive brain tumor that infiltrates surrounding brain tissue, profoundly affecting adjacent cortical areas. This study investigates how GBM reshapes the peritumoral cortex by examining plasticity changes in two GBM mouse models. Using optogenetic stimulation, we observed altered motor map￾ping and reduced cortical specificity in GBM mice compared to controls. Morphologically, GBM mice showed a reduction in dendritic spines, perineuronal nets, and inhibitory markers. Functionally, inhibitory circuits were markedly impaired, characterized by an increased frequency of spontaneous inhibitory currents and a decrease in their amplitude. Our findings highlight the critical role of inhibitory circuit disruption in driving cortical reor￾ganization and loss of motor map specificity. The reduction of parvalbumin and somatostatin interneurons, degradation of perineuronal nets, and imbalance in the excitation/inhibition ratio contribute to maladaptive plasticity, increasing the risk of hyperexcitability and seizures. These insights offer a basis for developing therapeutic strategies aimed at restoring inhibitory function, mitigating GBM-induced cortical changes, and potentially improving patient outcomes.

Inhibitory circuit dysfunction as a potential contributor to cortical reorganization in Glioblastoma progression

Cristina Spalletti
Co-primo
;
Marta Scalera
Co-primo
;
Elisabetta Mori
Co-primo
;
Marco Mainardi;Daniele Cangi;Vinoshene Pillai;Silvia Landi;Matteo Caleo;Eleonora Vannini
2025

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor that infiltrates surrounding brain tissue, profoundly affecting adjacent cortical areas. This study investigates how GBM reshapes the peritumoral cortex by examining plasticity changes in two GBM mouse models. Using optogenetic stimulation, we observed altered motor map￾ping and reduced cortical specificity in GBM mice compared to controls. Morphologically, GBM mice showed a reduction in dendritic spines, perineuronal nets, and inhibitory markers. Functionally, inhibitory circuits were markedly impaired, characterized by an increased frequency of spontaneous inhibitory currents and a decrease in their amplitude. Our findings highlight the critical role of inhibitory circuit disruption in driving cortical reor￾ganization and loss of motor map specificity. The reduction of parvalbumin and somatostatin interneurons, degradation of perineuronal nets, and imbalance in the excitation/inhibition ratio contribute to maladaptive plasticity, increasing the risk of hyperexcitability and seizures. These insights offer a basis for developing therapeutic strategies aimed at restoring inhibitory function, mitigating GBM-induced cortical changes, and potentially improving patient outcomes.
2025
Istituto di Neuroscienze - IN -
Glioblastoma multiforme, Parvalbumin interneurons, Peritumoral tissue, Inhibitory circuits, Morpho-functional reorganization, Preclinical study
File in questo prodotto:
File Dimensione Formato  
Spalletti, Scalera Mori et al 2025 Neurob of Dis.pdf

accesso aperto

Licenza: Creative commons
Dimensione 7.84 MB
Formato Adobe PDF
7.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact