Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to prevent neuroinflammation and promote neuroprotection by using both in vitro and ex vivo models of β-amyloid induced neurotoxicity. Our data showed that BCP significantly protected human microglial HMC3 cells from Aβ25-35-induced cytotoxicity, reducing the release of pro-inflammatory cytokines (TNF-α, IL-6) while enhancing IL-10 secretion. These effects were associated with a reduced activation of the NF-κB pathway, which emerged as a central mediator of BCP action. Notably, the use of CB2R- or PPARγ-selective antagonists revealed that the observed NF-κB inhibition by BCP may involve the coordinated activation of both canonical (e.g., CB2R) and non-canonical (e.g., PPARγ) receptors. Moreover, BCP restored the expression of SIRT1, PGC-1α, and BDNF, indicating the involvement of neurotrophic pathways. Clear neuroprotective properties for BCP have been highlighted in Aβ1-42-treated brain slice preparations, where BCP demonstrated the rescue of both the amyloid-dependent depression of BDNF expression and long-term synaptic potentiation (LTP) impairment. Overall, our results suggest that BCP constitutes an attractive natural molecule for the treatment of Aβ-induced neuroinflammation and synaptic dysfunction, warranting further exploration for its clinical application.

Multi-Target Protective Effects of β-Caryophyllene (BCP) at the Intersection of Neuroinflammation and Neurodegeneration

Origlia, Nicola;
2025

Abstract

Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to prevent neuroinflammation and promote neuroprotection by using both in vitro and ex vivo models of β-amyloid induced neurotoxicity. Our data showed that BCP significantly protected human microglial HMC3 cells from Aβ25-35-induced cytotoxicity, reducing the release of pro-inflammatory cytokines (TNF-α, IL-6) while enhancing IL-10 secretion. These effects were associated with a reduced activation of the NF-κB pathway, which emerged as a central mediator of BCP action. Notably, the use of CB2R- or PPARγ-selective antagonists revealed that the observed NF-κB inhibition by BCP may involve the coordinated activation of both canonical (e.g., CB2R) and non-canonical (e.g., PPARγ) receptors. Moreover, BCP restored the expression of SIRT1, PGC-1α, and BDNF, indicating the involvement of neurotrophic pathways. Clear neuroprotective properties for BCP have been highlighted in Aβ1-42-treated brain slice preparations, where BCP demonstrated the rescue of both the amyloid-dependent depression of BDNF expression and long-term synaptic potentiation (LTP) impairment. Overall, our results suggest that BCP constitutes an attractive natural molecule for the treatment of Aβ-induced neuroinflammation and synaptic dysfunction, warranting further exploration for its clinical application.
2025
Istituto di Neuroscienze - IN -
BDNF
CB2R
LTP
PPARγ
beta-caryophyllene
microglia
neuroinflammation
File in questo prodotto:
File Dimensione Formato  
ijms-26-06027-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact